
Your Build Scripts Stink:
The State of Code Smells in Build Scripts
Mahzabin Tamanna

North Carolina State University
North Carolina, USA
mtamann@ncsu.edu

Yash Chandrani
North Carolina State University

North Carolina, USA
ychandr@ncsu.edu

Matthew Burrows
North Carolina State University

North Carolina, USA
myburrow@ncsu.edu

Brandon Wroblewski
North Carolina State University

North Carolina, USA
bnwroble@ncsu.edu

Laurie Williams
North Carolina State University

North Carolina, USA
lawilli3@ncsu.edu

Dominik Wermke
North Carolina State University

North Carolina, USA
dwermke@ncsu.edu

Abstract—Build scripts automate the process of compiling
source code, managing dependencies, running tests, and pack-
aging software into deployable artifacts. These scripts are ubiq-
uitous in modern software development pipelines for streamlining
testing and delivery. While developing build scripts, practitioners
may inadvertently introduce code smells, which are recurring
patterns of poor coding practices that may lead to build failures
or increase risk and technical debt. The goal of this study is to
aid practitioners in avoiding code smells in build scripts through
an empirical study of build scripts and issues on GitHub. We
employed a mixed-methods approach, combining qualitative and
quantitative analysis. First, we conducted a qualitative analysis of
2000 build-script-related GitHub issues to understand recurring
smells. Next, we developed a static analysis tool, Sniffer, to
automatically detect code smells in 5882 build scripts of Maven,
Gradle, CMake, and Make files, collected from 4877 open-
source GitHub repositories. To assess Sniffer’s performance, we
conducted a user study, where Sniffer achieved higher precision,
recall, and F-score. We identified 13 code smell categories, with
a total of 10,895 smell occurrences, where 3184 were in Maven,
1214 in Gradle, 337 in CMake, and 6160 in Makefiles.

Our analysis revealed that Insecure URLs were the most
prevalent code smell in Maven build scripts, while Hardcoded
Paths/URLs were commonly observed in both Gradle and CMake
scripts. Wildcard Usage emerged as the most frequent smell in
Makefiles. The co-occurrence analysis revealed strong associa-
tions between specific smell pairs of Hardcoded Paths/URLs with
Duplicates, and Inconsistent Dependency Management with Empty
or Incomplete Tags, which indicate potential underlying issues in
the build script structure and maintenance practices. Based on
our findings, we also recommended strategies to remove code
smells in build scripts to improve the efficiency, reliability, and
maintainability of software projects.

Index Terms—Code smells, Build scripts, CI/CD, Devops,
Software supply chain security, Empirical study, Static analysis

I. INTRODUCTION

Build scripts are ubiquitous in modern software develop-
ment, facilitating the automation of complex software appli-
cation compilation, testing, and deployment processes. Build
scripts are used to transform source code into deliverable
artifacts. Developers use build tools such as Maven and Gradle
to define their respective build systems [1] and maintain

consistency and reproducibility across diverse environments
by standardizing the build process [2]–[4]. To automate the
software development and testing process, the majority of
well-maintained software projects make use of build tools like
Maven and Gradle [5]. According to JetBrains [6], Maven and
Gradle are popular for project building with 71% and 48%
usage in the industry, respectively.

As software systems grow in scale and functionality, build
scripts become increasingly complex [7] and might require
frequent maintenance [8], which can negatively impact overall
project quality and developer productivity [9]. Consequently,
these scripts become susceptible to various code smells.

Code smells are indicators of potential underlying issues in
the design and implementation of software, which increases
the fault-proneness [10] and makes the system more difficult
to maintain [11] and understand [12]. Code smells are the
symptoms of poor design and implementation [13], which
leads to technical debt [14]. Code smell introduces bugs,
affects software maintainability [15], and causes developers’
burden [16]. Early detection and remediation of these smells
could aid in reducing higher maintenance costs, improving
software reliability, and mitigating security risks throughout
the automated software development life cycle [17].

Prior studies showed that files without code smells exhibit
approximately 33%–65% lower risk of fault compared to those
containing code smells [18], [19]. Code smells are important
predictors of build failures, indicating a link between code
quality in build scripts and build reliability [20]. Moreover,
broken builds could disrupt team productivity and negatively
impact overall project performance [21]. Previous studies have
explored the adverse effects of code smells in platforms such
as Travis CI [22], Infrastructure as Code (IaC) [23], and
source code [24]. However, despite the widespread use of
build scripts in modern software development, particularly
within Continuous Integration and Continuous Deployment
(CI/CD) pipelines, to our knowledge, a systematic analysis
of the presence of code smells in the context of build scripts
has not been performed yet. Overlooked code smells in build

ar
X

iv
:2

50
6.

17
94

8v
4

 [
cs

.S
E

]
 3

1
O

ct
 2

02
5

https://arxiv.org/abs/2506.17948v4

scripts could inadvertently facilitate the spread of bad coding
practices, thereby impeding the adaptability and maintainabil-
ity of software systems [25], [26]. In this paper, we aim to sys-
tematically investigate, identify, and quantify the prevalence
of code smells in the context of build scripts, employing both
static analysis techniques and qualitative assessments.

The goal of this paper is to aid practitioners in avoiding
code smells in build scripts through an empirical study of

build scripts and issues on GitHub.

For this, we aim to address the following research questions:
RQ1: What code smells occur in build scripts?
RQ2: How frequently do code smells occur in build scripts?

We address our research questions by examining four types
of build scripts: Maven [27], Gradle [28], CMake [29], and
Make [30], as well as build script-related GitHub issues, which
are collected from open-source GitHub repositories. We con-
ducted a qualitative analysis of 2,000 GitHub issues to identify
prevalent code smells, following established guidelines for
qualitative research [31]. Next, we collected build scripts from
GitHub and leveraged Large Language Models (LLMs) to
identify potential code smells in build scripts. We used six
general and code-oriented LLMs, i.e., ChatGPT4, ChatGPT4o,
Codellama, Llama 8B, Llama 13B, and Mistral, to detect
potential code smells in the build script. Through the analysis,
we identified a code smell taxonomy and identified 13 code
smell categories. Furthermore, we mapped each code smell
category to its corresponding Common Weakness Enumeration
(CWE) to establish standardized categorizations of the under-
lying weaknesses. Based on our qualitative study and findings
from the LLMs, we developed a static analysis tool, “Sniffer”,
to automatically detect code smells. Further, we developed an
Oracle through a user study to compare our tool’s performance
against human evaluation. For our empirical analysis, we gath-
ered 5882 build scripts from 4877 open-source repositories.
We measured the occurrence, frequency, smell density, and
co-occurrence of the code smells. The contributions of our
study are outlined below:
1) Identification and detailed classification of code smells

specifically prevalent in build scripts for Maven, Gradle,
CMake, and Make.

2) Development and evaluation of ”Sniffer,” a novel static
analysis tool to automatically detect code smells in build
scripts.

3) Development of an Oracle to compare our linter perfor-
mance against the human evaluation of code smells.

4) Analysis of the occurrence and frequency of build script-
specific code smells.

We organized this paper as follows: background informa-
tion with related work in Section II, the methodologies and
results of identifying code smells in Section III. Development
methodology and evaluation of Sniffer in Section IV. Empiri-
cal Analysis of Build Scripts in Section V. Detailed discussion
and recommendation in Section VI. Sections VII and VIII
cover threats to validity. Section IX provides conclusions.

II. BACKGROUND AND LITERATURE REVIEW

The concept of code smells was popularized by Kent Beck
on WardsWiki in the late 1990s, and later usage of the term
increased by Fowler [13], which was initially focused on iden-
tifying patterns in source code that may indicate deeper design
or maintenance problems. Later, multiple works focused on
detecting code smells in various domains, including source
code [32]–[34], configuration code [35], and Infrastructure as
Code (IAC) [36].

Code smells act as strong indicators of broader software
quality issues. Barrak et al. [20] demonstrate that code and
test smells are strong predictors of build failures. According
to Adams et al. [37], there is a co-evolutionary relationship
between source code and build scripts, emphasizing that both
need to remain synchronized. Build scripts are prevalently
used in automating the compilation, testing, packaging, and
deployment of software and are also susceptible to similar
code smells. By encapsulating a sequence of commands and
configurations, build scripts eliminate the need for manual
intervention, reducing the risk of human error and accelerating
the software delivery pipeline [38]. However, when smells
in build scripts are neglected, they often lead to build fail-
ures [39]. The effort of maintaining build systems is nontrivial.
Research by McIntosh et al. [7] found that build maintenance
tasks account for up to 27% of the overhead in source code
development and 44% in test development. Moreover, 22% of
commits and 27% of development tasks directly involve build
scripts, highlighting the substantial developer effort spent on
managing build infrastructure. Code smells can lead to broken
builds and integration delays, disrupting team productivity and
software delivery timelines [40]. Zhang et al. [41] analyzed CI
performance smells, reporting a 12.4% improvement in build
performance when these smells were addressed. Similarly,
Saidani and Ouni [22] demonstrated that incorporating bad
smell detection enhances build failure prediction accuracy by
4%, reinforcing the value of systematic smell detection.

Despite the importance of build scripts in modern software
development workflows, build scripts remain understudied.
While source code smells have been extensively studied and
cataloged in other codebases [32], [42]–[45], there is no
comprehensive or standardized taxonomy of smells for build
scripts that has been studied. Moreover, security incidents
such as the XZ Utils backdoor [46] have underscored how
weaknesses and negligence in build processes can act as a
vector for supply chain attacks. These highlight the gap and
need for a systematic analysis of build script quality to identify
both maintenance and security-related smells. To address this
gap, this work aims to systematically identify and categorize
code smells specific to build scripts across multiple build
systems and to suggest their potential mitigation to enhance the
maintainability and security of build automation processes.

III. INVESTIGATING CODE SMELLS IN BUILD SCRIPTS

We conducted a mixed-method study with qualitative and
quantitative parts to answer our research questions. We dis-

cussed the methods that have been applied for RQ1 in Sec-
tion III-A and the findings for RQ1 in Section III-B.

A. RQ1: What code smells occur in build scripts?

In steps of methodology: i) Qualitative analysis of GitHub
issues. ii) Qualitative analysis of build scripts LLMs. iii) Code
smells to CWE mapping.

1) Qualitative Analysis on GitHub Issues: Our qualitative
analysis consists of three phases: platform selection, data
collection, and qualitative coding.
Platform Selection: For this study, we selected GitHub
as it is a widely used platform for open source software
development [47] and scientific research [48]. According to
the StackOverflow 2024 survey [49], Maven, Gradle, Cmake,
and Make are the most popular and widely used build system
tools; as such, we selected these build tools for our study.
Data Collection: We performed a keyword-based search
within the GitHub repositories using the Rest API and
GraphQL. We specifically searched for build scripts and
code-smell-related keywords in the GitHub repositories and
issues’ metadata, including titles, descriptions, and labels for
the selected build type. Two authors collaboratively reviewed
and iteratively refined the search queries for their relevance
and accuracy based on prior studies on code smells and
practitioner blog posts [35], [50]–[53]. The search strings
included:
“codesmell”, “code smell”, “bad practice”, “bad smell”,
“HTTP external download”, “empty password”, “long pa-
rameter”, “long method”, “inconsistent version”, “aban-
doned dependencies”, “unused dependency”, “duplicate
code”, “long method”, “admin by default”, “anti-pattern”,
“hardcoded paths”, “duplicated configuration”, “duplicate
code”, “conditional complexity”, “Dead code”, “inconsis-
tent name”, “complex build logic”, “inconsistent depen-
dency versions”, “unused dependencies”, “excessive build
times”, “lack of modularity”, “excessive task dependencies”,
“Path-misconfiguration”.

Following the process, we collected 7533 GitHub issues.
Further removing the duplicates, 7104 unique issues remained.

Qualitative Coding: We conducted a qualitative analysis
to obtain a summarized overview of recurring bad coding
practices in build scripts and to gain insight into potential
code smells. For this process, we randomly selected 200 issues
of each type of build script (Maven, Gradle, CMake, and
Make), totaling 800 GitHub issues out of 7104 unique issues.
Two authors independently conducted a descriptive qualitative
analysis [54] on these sampled issues. To our knowledge,
at the time of this study, no prior research or predefined
list of code smells specific to build scripts was available.
To enhance the completeness of our qualitative findings, we
compared the 800 issues analyzed with the remaining dataset
using the Jaccard similarity index [55]. We employed the
Jaccard score to identify and prioritize dissimilar issues for
further analysis based on the assumption that similar issues
are likely to yield similar or the same code smell as detected
in the first 800 issues. Consequently, issues with the lowest

Jaccard scores were selected as starting points for further
investigation. Following the process, we analyzed an additional
1200 issues, 300 issues from each building type, ultimately
reaching a saturation point [56], where no new code smells
were identified. Following this process, we qualitatively coded
2000 GitHub issues in total. After conducting descriptive
coding, the authors collaboratively finalized the code smells
list and addressed any conflicts through a negotiated agreement
approach [57]. Disagreements were resolved either by elimi-
nating inappropriate categories for code smells or by merging
closely related categories to form a unified and coherent
categorization. Following the processes, we created an initial
list of code smells based on our GitHub issue analysis [58].

2) Qualitative Analysis of Build Scripts Leveraging LLMs:
In this phase, we leveraged Large Language Models (LLMs)
to analyze and detect code smells within build scripts. The
primary objective of employing LLMs was to explore their
potential for automating the identification of code smells,
given their advanced capabilities in understanding both natural
language and programming code semantics. Recent studies
demonstrated that LLMs exhibit strong performance in a range
of software engineering and security tasks [59]–[61]. Details
about the build scripts analysis using LLMs are given below.

Data Collection: For our build script analysis, we applied a
multi-faceted approach to construct a dataset of build scripts
from open-source projects. We developed an automated Python
script that utilizes the GitHub API to identify and retrieve build
files specifically associated with four selected build systems:
Maven, Gradle, CMake, and Make. The script was configured
to search for build script filenames corresponding to these
systems, such as:

• Maven: pom.xml
• Gradle: build.gradle and build.gradle.kts
• CMake: CMakeLists.txt
• Make: Makefile (and files with the .mk extension)

For each build system, we employed a system-specific search
query (e.g., filename:pom.xml) and iteratively retrieved
the search results from GitHub. To maximize coverage, mul-
tiple pages of results were fetched. For search results, we
collected relevant metadata, including the repository name,
repository URL, and the raw URL of the build script. Next,
we collected the exact build script using the corresponding
URL. The data collection steps utilized broad GitHub queries
and retrieved results from multiple pages, without restrictions
on project domain, size, or popularity. This approach allowed
us to collect a diverse set of build scripts from projects of
varying maturity levels and development practices. Following
the data collection step and removing duplicate entries, our
final dataset comprised 2,134 distinct build scripts.

Selection of LLM: We leveraged LLMs to detect code
smells in build scripts. We selected six LLM models with
a mix of general code-based, paid, and open-source models,
namely ChatGPT 4, ChatGPT 4o, LLaMA 8B, LLaMA 13B,
CodeLLaMA, and Mistral. First, we selected 100 scripts from
the collected build scripts. Next, we applied zero-shot prompt-
ing across six LLMs, instructing them to analyze the build

TABLE I
LLMS COMPARISON BASED ON RECALL

Maven Gradle CMake Make
Llama 8B 41% 36% 27% 13%
Llama 13B 32% 38% 20% 13%
Codellama 29% 34% 14% 16%
Mistral 41% 43% 31% 13%
ChatGPT 4 59% 52% 36% 33%
ChatGPT 4o 78% 75% 52% 42%

scripts and identify instances of code smells. We provided an
initial list of potential code smells identified in our qualitative
analysis of GitHub issues. The models were tasked with
detecting both the predefined code smells and any additional,
previously unrecognized code smells they could infer from the
scripts. Prompt details are available in data availability [58].

Validation of LLM: To evaluate the models’ performance,
three authors independently and manually analyzed a selection
of 100 build scripts to verify detected code smells. The
results from this manual analysis were then compared against
the results provided by the six LLMs’ outputs. To avoid
potential bias, the first author was responsible for executing the
LLMs and comparing their output with the manual analysis,
while the second, third, and fourth authors conducted the
manual evaluations and resolved any conflict through iterative
discussion and following negotiation agreement [57]. Among
the analyzed LLMs, ChatGPT-4o showed the highest recall,
accurately identifying the majority of true positive code smells,
presented in Table I. As a result, ChatGPT-4o was selected for
further analysis.

Code Smell Taxonomy: We analyzed 2,134 collected build
scripts using ChatGPT-4o, following a consistent prompt and
procedure. This process provided a large list of code smells. To
facilitate structured analysis, we grouped similar code smells
into broader smell categories. For instance, LLM-generated
responses such as “HTTP URL for Maven Central,” “Insecure
Repository URL,” and “HTTP Repository URL” were grouped
under the category “Insecure URLs,” as they reflect a common
pattern of using unsecured links within build scripts. We
merged findings from our GitHub repository analysis with the
LLM-generated results, ensuring that the final taxonomy was
grounded in both automated detection and manual findings.
Two coders independently conducted the analysis, with iter-
ative refinement until thematic saturation was reached [56].
Through this process, we identified 13 distinct code smell
categories. The inter-rater reliability for categorization was a
Cohen’s k of 0.81, which indicates strong agreement between
coders. The final and complete list of identified categories is
provided in Table II.

3) Code Smells to CWE Mapping: To assess the security
relevance of the identified code smells in build scripts, we
mapped each instance to corresponding entries in the Common
Weakness Enumeration (CWE) database [62]. We selected
CWE as the reference framework due to its standardized

taxonomy of software security weaknesses and proper main-
tenance by the cybersecurity community. For example, the
smell “Hardcoded credential” was mapped to both CWE-
798: Use of Hard-coded Credentials and CWE-259: Use of
Hardcoded Password [62]. To be consistent with the objectivity
in the mapping process, two authors independently performed
mapping between code smells and CWEs. Further, we resolved
our conflicts through discussion with another author. Our
evaluations demonstrate perfect consistency, resulting in a
Cohen’s Kappa score of 1.0 after resolving conflict, which
indicates perfect inter-rater reliability. A list of the identified
code smells across different types of build scripts with the
associated CWE is in Table II.

B. Answer to RQ1: What code smells occur in build scripts?

In this section, we provided an answer for RQ1. While
some of these categories overlap with smells identified in
prior studies, Infrastructure-as-Code (IaC) [23] and CI/CD
pipelines [41], [63], [64], our findings reveal how these issues
manifest uniquely in build scripts. Below, we discussed the
identified thirteen code smell categories in detail. An annotated
Maven script illustrating all categories is shown in Figure 1.

• Complexity: This code smell refers to overly complex
logic in build scripts, such as nested conditionals, inline
shell commands, or convoluted plugin chains. This smell
is also known as conditional complexity, using lengthy,
cascading if statements or switch/case [65]. The existence
of such smells reduces maintainability and increases the
likelihood of misconfiguration. This smell is linked to
CWE-710: Improper Adherence to Coding Standards.

• Deprecated Dependencies: This smell refers to the
recurring pattern of using abandoned or not-maintained
dependencies. Using deprecated libraries or APIs in build
configurations is indicative of poor dependency manage-
ment [66]. Deprecated components are typically no longer
maintained or updated and may harbor known vulnerabili-
ties. This smell is closely associated with CWE-1104: Use
of Unmaintained Third-Party Components, which refers
to the risks of depending on obsolete software packages.

• Duplicates: Duplicate code declarations occur when the
same dependency, code, or configuration is redundantly
included in the build script [67], [68]. This practice leads
to bloated scripts, increases maintenance overhead, and
may cause unexpected behaviors due to overriding rules.
Although there is no exact CWE that captures this issue,
it falls under the CWE-710: Improper Adherence to Code
Standards, which represents poor coding practices.

• Empty/Incomplete Tags: This smell refers to
the use of XML elements without content (e.g.,
<modelVersion></modelVersion>), which can
lead to undefined behavior or misinterpretation by tools.
This smell is linked to CWE-611: Improper Restriction
of XML External Entity Reference (XXE), indicating a
lack of standardization. As this is an XML-based code
smell, among the four build systems we studied, this
code smell appeared only in Maven and Gradle.

TABLE II
LIST OF IDENTIFIED CODE SMELL

Code Smell Category Maven Gradle CMake Make Common Weakness Enumeration (CWE)
Complexity * * CWE-710: Improper Adherence to Coding Standards
Deprecated Dependencies * * * * CWE-1104: Use of Unmaintained Third-Party Components
Duplicate * * * * CWE-710: Improper Adherence to Coding Standards
Empty/Incomplete Tags * * CWE-611: Improper Restriction of XML External Entity Reference (XXE)

Hardcoded Credentials * * * * CWE-798: Use of Hard-coded Credentials
CWE-259: Use of Hard-coded Password

Hardcoded Paths/ URLs * * * * CWE-427: Uncontrolled Search Path Element
CWE-706: Use of Incorrectly-Resolved Name or Reference

Inconsistent Dependency Management * * CWE-439: Behavioral Change in New Version or Environment
CWE-710: Improper Adherence to Coding Standards

Insecure URLs * * * * CWE-319: Cleartext Transmission of Sensitive Information
Lack Error Handling * * * * CWE-391: Unchecked Error Condition
Missing Dependency Version * * * * CWE-440: Expected Behavior Violation
Outdated Dependencies * * * * CWE-1104: Use of Unmaintained Third-Party Components
Suspicious Comments * * * * CWE-546: Suspicious Comment
Wildcard Usage * * * * CWE-829: Inclusion of Functionality from Untrusted Control Sphere

• Hardcoded Credentials: Hardcoded credentials refer
to the recurring pattern of embedding authentication or
sensitive information, such as usernames, passwords, API
tokens, or private keys, directly within build scripts.
This approach poses a major security risk as sensitive
information may be inadvertently exposed through ver-
sion control. As a result, secrets can be exposed to
public repositories and cause unauthorized access to the
system. Prior work shows this smell in IaC and CI/CD
(e.g., secrets in Puppet, workflow tokens), with prolonged
lifetimes and high exploitation risk [23], [64]. In build
scripts, the risk is amplified because credentials are
embedded in artifact management and dependency resolu-
tion workflows, directly affecting supply-chain integrity.
This smell aligns with CWE-798: Use of Hard-coded
Credentials and CWE-259: Use of Hard-coded Password,
which highlights the vulnerability of storing sensitive data
in an unprotected and immutable manner.

• Hardcoded Paths/URLs: This smell refers to the recur-
ring pattern of the direct inclusion of absolute paths or
fixed URLs in build scripts. Embedding absolute paths or
fixed URLs directly into scripts can lead to failures when
the code is executed in different environments, as these
paths may not exist or may differ across systems. This
could reduce the portability and adaptability of the build
process [69], [70]. Furthermore, hardcoded network paths
can expose the system to untrusted locations. This smell
aligns with CWE-427: Uncontrolled Search Path Element
and CWE-706: Use of Incorrectly-Resolved Name or
Reference.

• Inconsistent Dependency Management: This smell
refers to the inconsistency, such as simultaneous use
of hardcoded versions and version variables within the
same project or using different versions of the same
dependency within the same code block. Such inconsis-
tency can result in dependency conflicts and undermine
reproducibility. While not directly to a specific CWE, this
issue aligns with broader software quality concerns, such
as CWE-440 Expected Behavior Violation.

• Insecure URLs: Using non-secure URLs (i.e., HTTP in-
stead of HTTPS) for fetching dependencies or uploading
artifacts is considered a code smell. This practice exposes
communication channels to man-in-the-middle (MITM)
attacks and tampering [71]. Similar misconfigurations in
CI/CD have been studied [63], [64], but our analysis
shows that insecure URLs are especially widespread
in Maven (93% of scripts). This finding suggests that
insecure URLs are not isolated errors but a systemic, tool-
driven pattern in build scripts, contributing to long-term
security debt in software supply chains. This smell corre-
sponds to CWE-319: Cleartext Transmission of Sensitive
Information.

• Lack of Error Handling: For build scripts, this
smell refers to a lack of error checking or pass-
ing the code with an error. For example, if the
maven script “sql-maven-plugin” is configured with
<onError>continue</onError>, which means
that the build will continue even if errors occur during
SQL execution. This can mask issues that should be
addressed before deployment. It is a code smell because it
can lead to overlooking major errors, resulting in unstable
or incorrect build artifacts. This smell falls under CWE-
391: Unchecked Error Condition.

• Missing Dependency Version: When a dependency is
declared without an explicit version number, the build
system applies different dependency resolution mecha-
nisms. For example, Maven will fail the build unless a
version is inherited [72] and Gradle attempts to resolve
the dependency via transitive dependencies [73], which
potentially introduces unstable or insecure components.
This form of version drift is a common software supply
chain risk and is covered under CWE-439: Behavioral
Change in New Version or Environment, and CWE-710:
Improper Adherence to Coding Standards.

• Outdated Dependencies: This smell refers to a practice
when build scripts reference older versions of depen-
dencies for which more secure or stable releases exist.
Persisting with outdated libraries increases the likelihood

Fig. 1. An annotated Maven script example with all identified code smell
categories.

of exposure to known vulnerabilities and creates an attack
vector [74]. As with deprecated components, this issue is
categorized under CWE-1104, emphasizing the need for
timely dependency upgrades.

• Suspicious Comments: This smell refers to comments
that expose unresolved defects, missing functionality, or
potential weaknesses in the system. Similar to prior work
on IaC [23], we also observed this smell in build scripts.
It corresponds to CWE-546: Suspicious Comment. Typ-
ical examples include annotations such as “TODO” or
“FIXME,” which often signal latent issues that have not
yet been addressed [75].

• Wildcard Usage: This code smell refers to not spec-
ifying the version numbers for the build, instead us-
ing ‘*’ or ‘+’. The given example in Figure 1 shows
that “software.amazon.awssdk:*” has been used. During
prototyping or early development, using the wildcard
version helps in the fast inclusion of all artifacts from
certain groups, but in the long run, this can cause version
drift [76], dependency bloat [77], or dependency confu-
sion [78]. This smell is mapped to CWE-829: Inclusion
of Functionality from Untrusted Control Sphere.

IV. SNIFFER: STATIC ANALYTICS TOOL FOR BUILD
SCRIPTS

Our static analysis tool, Sniffer, has been developed to auto-
matically detect code smells in build scripts. In this section, we

describe the development and evaluation process of Sniffer’s
smell detection. Our tool is available in data availability [58].

A. Design and Development of Sniffer
Sniffer is a static-analysis tool that detects security and

maintainability-oriented code smells in four widely-used build
systems: Maven, Gradle, CMake, and Make. The following
paragraphs describe each layer in turn.

1. Input Orchestration: On invocation, the dispatcher deter-
mines the target build system by (i) examining the file name
and (ii) applying lightweight lexical heuristics, for example,
searching the first kilobyte for cmake minimum required or
the presence of make-style rules. The file is then forwarded to
the corresponding parser module.

2. Specialised Parsers:
Maven. POM files are loaded as raw bytes, any editor-added

line prefixes are stripped, and the payload is parsed with
lxml.XMLParser(recover=true). The resulting tree is nor-
malized into lists of dependencies, plugins, and XML
nodes used by downstream checks.

Gradle. A tri-regex strategy extracts dependency declarations
in Groovy DSL, Kotlin DSL, and map notation; repository
URLs are captured via a dedicated pattern. The full script
is preserved in raw_content for textual analyses.

CMake. The parser identifies find package, add executable,
and add library directives and records their arguments.
Files lacking an explicit cmake minimum required state-
ments are still analyzed, improving coverage of legacy
projects.

Make. To avoid side effects, files containing
$(shell ...) fall back to a naı̈ve line scanner
that collects variable assignments, rules, and commands.
Otherwise, the parser exploits make -pn to obtain
an expanded database, which is then converted into a
structured MakefileAnalysis object.

3. Shared Utility Layer: Common functionality is con-
solidated in common/. In particular, version_utils.py
performs metadata look-ups on Maven Central and implements
semantic-version comparison. Results are cached in an LRU
store to bound network overhead.

4. Dynamic Rule Engine: All smell detectors are defined
as functions whose names begin with check_ and that
accept exactly one positional argument. At start-up the en-
gine introspects every security-check module, registers the
matching callables, and executes them in sequence. Each
detector returns a set of issue dictionaries of the form
{smell_id, issue, severity}; exceptions are captured
and re-emitted as low-severity findings, ensuring that the
individual failures do not interrupt analysis.

Smell Catalog: Forty-two detectors are implemented to
detect the smells. They span version-related risks (missing,
inconsistent, outdated, or stale dependencies), hard-coded se-
crets and absolute paths, insecure transport (HTTP URLs),
duplicate or unused declarations, complexity heuristics, and
inadequate error handling. All smells are mapped to relevant
CWEs to facilitate security triage.

Extensibility: Supporting an additional build system entails
providing (i) a parser that emits the canonical data schema
and (ii) optional smell detector modules. The dispatcher and
rule engine remain untouched, offering a clear path for future
expansion (e.g., Bazel or SCons). Details of each of the four
build types: parser pattern, regular expressions, the ruleset, and
detection logic used behind Sniffer are provided [58].

B. Performance Evaluation
In this section, we discussed the steps of Sniffer’s perfor-

mance evaluation. We evaluated our tool’s performance in two
ways. i) Evaluation Against Manual Analysis ii) Evaluation
Against Oracle Dataset. Both approaches are explained below.
The results of both analyses are discussed in Section IV-C.

1) Evaluation Against Manual Analysis:
To test Sniffer’s performance, we first randomly selected

100 scripts collected from four datasets. Next, two authors
manually analyzed the scripts for each of the identified code
smells. We then ran Sniffer on the same sampled build scripts
and measured the Precision, Recall, and F1 values. Next, we
compared Sniffer’s output with our manual analysis to evaluate
the tool’s performance. Our findings are presented in Table III.

2) Evaluation Against Oracle Dataset: We constructed
the Oracle dataset using a closed coding approach [79],
where a set of raters analyzes material and identifies code
smells based on a predefined codebook [58]. The material
consisted of 72 scripts that were manually examined for
code smells. Raters applied their knowledge of programming
and build scripts to determine whether a particular smell
was present in each script. To avoid bias, raters were not
involved in this research as part of the primary code smells
identification or the development of Sniffer. As raters, we
recruited 20 Computer Science graduate students from NC
State University who had some level of familiarity with
build scripts to serve as raters. We obtained an institutional
review board (IRB) approval for student participation VII.
Each rater was compensated with a $20 gift card for their
involvement. The 72 scripts were sampled to include a mix of
scripts with and without code smells. These scripts were then
distributed among the 20 raters, ensuring that each script was
independently reviewed by at least two raters, with no rater
reviewing more than eight scripts. The smell identification
task was submitted through Qualtrics. In each task, a rater
determined which of the code smells identified in Section III
were present in a given script. We observe agreements on the
scripts, with a Cohen’s Kappa of 0.63. According to Artstein
and Poesio’s interpretation [80], the reported agreement is
considered “substantial”. After the construction of the Oracle
dataset, we evaluated Sniffer’s performance by comparing
Oracle results with Sniffer’s findings using Precision, Recall,
and F1 scores.

C. Performance Evaluation Results

Sniffer’s performance for Precision, Recall, and F1 scores
is presented in Table III. As shown in the table, the Pre-

TABLE III
SNIFFER’S PRECISION, RECALL, AND F1 SCORES

Manual Analysis Oracle
Build Scripts Precision Recall F1 Precision Recall F1
Maven 0.92 0.83 0.874 0.84 0.83 0.835
Gradle 0.90 0.89 0.895 0.81 0.81 0.810
CMake 0.91 0.93 0.920 0.82 0.81 0.815
Make 0.83 0.86 0.845 0.83 0.80 0.815
Average 0.89 0.88 0.883 0.83 0.81 0.819

cision, Recall, and F1 values of the developed tool were
measured against the manual analysis, which served as the
ground truth. Additionally, we evaluated the tool against the
oracle’s output by measuring precision and recall across four
types of build scripts: Maven, Gradle, CMake, and Make.
When compared against manual analysis, Sniffer achieved
consistently high performance, with an average precision of
0.89, a recall of 0.88, and an F1-score of 0.883. Among
individual build systems, Maven achieved the highest precision
(0.92), while CMake showed the strongest recall (0.93) and
F1-score (0.920), indicating reasonably high agreement with
ground truth. We also measured the confidence intervals. The
95% confidence interval for manual analysis is (0.852–0.914),
indicating a narrow range around the mean, reflecting stable
performance. In terms of performance evaluation against the
Oracle, it showed slightly lower but comparable results, with
an average precision of 0.83, a recall of 0.81, and an F1-
score of 0.819. Maven again achieved the highest precision
(0.84), while both Gradle and CMake obtained the top recall
values (0.81). The 95% confidence interval for Oracle evalua-
tion (0.807—0.829) further confirms the consistency of these
results. Overall, Sniffer demonstrated strong agreement with
manual analysis and reliable performance against the Oracle
dataset. The narrow confidence intervals for both comparisons
highlight the stability of the tool’s results, underscoring Snif-
fer’s potential as an effective and reliable automated approach
for detecting code smells in build scripts.

V. EMPIRICAL ANALYSIS OF BUILD SCRIPTS

In this section, we provided an answer for RQ2. We
performed an empirical analysis of code smell in build scripts
using Sniffer. We discuss the build script collection method in
Section V-A and the findings for RQ2 in Section V-B.

A. RQ2: How frequently do code smells occur in build scripts?

1) Dataset: In this phase of the study, we conducted an
empirical study with a large-scale dataset of Maven, Gradle,
CMake, and Make scripts. To examine the prevalence of
identified code smells and enhance the generalizability of our
results, we focused on GitHub repositories, which are widely
used by organizations to host prominent open-source software
(OSS) projects [81]. In alignment with established research
practices [82], we focused on collecting OSS repositories to
have a diverse and accessible dataset. The data collection
process was followed by a set of pre-defined inclusion criteria,
detailed as follows:

TABLE IV
SUMMERY OF COLLECTED REPOSITORIES

Attributes Values
Script Type Maven Gradle CMake Make
Repositories 913 634 443 2887
Files 918 634 443 3887
Total LOC 125502 30872 23679 636283

• Criteria 1: The repository should contain at least one
of the selected types: Maven, Gradle, CMake, Make.
The Repositories should contain any of the following
types: pom.xml, build.gradle, build.gradle.kts, CMake.txt,
or Makefile.

• Criteria 2: The repositories are not clones or duplicates.

To avoid redundancy, repositories that have already been
processed and recorded in a central Google Sheet in Sec-
tion III-A2 data collection were skipped. This automated
approach allowed us to collect a large and diverse set of build
scripts from GitHub, forming the basis for the evaluation of the
static analysis tool and our empirical study. We answer RQ2
using 5882 scripts collected from 913 (Maven), 634 (Gradle),
443 (CMake), and 2887 (Make) repositories, respectively.
Summary attributes of the collected repositories are listed in
Table IV. Since most repositories contained only a single
build script, the total number of build scripts collected is
approximately equal to the number of repositories for Maven,
Gradle, and Makefiles. Moreover, given the longstanding use
of Makefiles in software development, the majority of the
collected data consisted of Makefiles.

B. Answer to RQ2: How frequently do code smells occur in
build scripts?

1) Occurrence: The occurrence is the number of each
code smell across different build systems. As represented in
Table V, among all smells, Wildcard Usage was the most fre-
quent, with 2,205 instances in Make scripts. Insecure URLs are
followed, especially common in Maven (854) and Make (587).
Lack of Error Handling also stood out in Make (988), while
Inconsistent Dependency Management was largely observed in
Maven (797). Additionally, Hardcoded Paths/URLs appeared
frequently in Make (664) and Maven (373), and Suspicious
Comments were notable in Make (685) and Gradle (104).
Deprecated Dependencies were dominant in Gradle (217),
and Outdated Dependencies in Maven (319). Duplicate entries
were mostly found in Maven (139) and Gradle (116), with
none in Make.

Other smells like Hardcoded Credentials, Missing Depen-
dency Version, and Complexity also showed varying occur-
rences, with Make and Gradle scripts often reporting higher
counts. The “no smells” represents the number of scripts
where no code smell was found for that certain build type.
These patterns suggest that certain smells are more prevalent
in specific ecosystems, possibly due to differing development
practices or code structure.

2) Proportion of script:
• Approach: The proportion of scripts metric indicates the

prevalence of a smell across individual scripts [23]. This
metric reflects the percentage of scripts that contain at
least one occurrence of smell.

• Results: As presented in Table V, Insecure URLs ap-
peared in the highest proportion of scripts, up to
93% in Maven and 15.1% in Make, underscoring their
widespread presence and associated security risks. Wild-
card Usage was also highly prevalent, particularly in
Make (56.7%) and CMake (23.3%), suggesting poten-
tially ambiguous dependency declarations. In contrast,
Hardcoded Credentials were rare, occurring in only 0.9%
of Maven scripts and in less than 0.1% across other types.

3) Smell Density:
• Approach: In previous studies, researchers utilized vul-

nerability density [83] and defect density [84], [85] to
measure the prevalence of such problems. In line with
the same concept, we employed equation 1 to quantify
the density of a code smell (d). Here, x is the total
occurrence of code smell for every 1000 Lines Of Code
(LOC), represented by KLOC.

Smell Density(d) =
Total occurrences of x

KLOC
(1)

where KLOC = LOC/1000

• Results: The Smell Density (per KLOC) column in Ta-
ble V reports the frequency of security smells normalized
per thousand lines of code (KLOC). Smell density pro-
vides a relative measure of smell intensity. Gradle scripts
exhibited notably higher smell densities across several
categories, such as Deprecated Dependencies (7.029 per
KLOC), Duplicate (3.757), and Suspicious Comments
(3.369), suggesting these scripts are often smaller but
more smell-prone per unit of code. Conversely, Make
scripts, while having high absolute occurrences, showed
lower density for most smells (e.g., Outdated Dependen-
cies: 0.030 per KLOC), indicating their higher LOC base
dilutes the relative impact of smells. This highlights the
importance of using density alongside raw counts for fair
cross-tool comparisons.

4) Smell co-occurrence matrix::
• Approach: To investigate how often one code smell is

present with another code smell in build scripts, we per-
formed a pairwise co-occurrence analysis. We calculated
the percentage of each smell type csi with another smell
type csj across our dataset of build scripts. Following the
methodology proposed by the previous studies [86], [87],
we measured the co-occurrence by using the following
formula:

Co-occurrencecsi→csj =
|csi ∩ csj |

|csi|
where, i ̸= j

The equation, |csi ∩ csj | represents the number of build
scripts that contain both smell types csi and csj , and |csi|

denotes the total number of scripts containing csi. This
directional metric captures the likelihood that the pres-
ence of smell csi implies the presence of smell csj , en-
abling the identification of strongly associated smell pairs.
Notably, Co-occurrencecsi→csj ̸= Co-occurrencecsj→csi

due to the asymmetry of the denominator.
• Results: As shown in the Figure 2, the code smell co-

occurrence in build scripts has several strong associations
between specific pairs of smells. Empty/Incomplete Tags
exhibit perfect co-occurrence with Insecure URLs (1.00)
and a near-perfect association with Inconsistent Depen-
dency Management (0.98), indicating that structurally
deficient scripts often suffer from insecure configurations
and poor dependency practices. Similarly, Duplicates co-
occur frequently with both Hardcoded Paths/URLs (0.67)
and Insecure URLs (0.68), suggesting that redundancy in
script elements is commonly linked with insecure or non-
modular path specifications.

VI. DISCUSSION

In this section, we discuss and recommend mitigation strate-
gies for the identified security smells in the build script in
Section VI-A, discuss the implementation of Sniffer for secure
build script practice in VI-B, and provide guidelines for future
work in Section VI-C.

A. Mitigation Strategies

The identification of recurring code smells within build
scripts highlights key areas where software quality, maintain-
ability, and security can be significantly improved. As tools
like Sniffer can help in code smell detection, mitigation is also
essential for a secure build system. In this section, we discuss
and recommend strategies to mitigate each of the identified
code smells.

Complexity: To address complexity in scripts, development
teams should adopt clear coding conventions and modular-
ize build logic into reusable components or scripts. Regular
refactoring sessions and peer reviews help manage complexity,
making build scripts easier to audit and maintain.

Deprecated Dependencies: Regular dependency monitor-
ing and automated tools such as OWASP Dependency-Check
or utilizing Software Composition Analysis (SCA) should be
employed to identify deprecated or unmaintained libraries. The
software development team should proactively replace depre-
cated dependencies with supported alternatives to minimize
security risks [88].

Duplicates: Mitigating duplicate declarations involves regu-
lar dependency audits and leveraging build tools (e.g., Maven’s
dependency analysis plugins) to detect redundancy. Clean,
simplified dependency structures enhance maintainability and
reduce complexity.

Empty/Incomplete Tags To mitigate empty tags or ele-
ments, automated validation tools (e.g., XML schema valida-
tors) should be integrated into CI/CD pipelines. Adherence
to XML schema standards prevents unintended behavior and
enhances script clarity.

Hardcoded Credentials To mitigate this issue, developers
should adopt secure credential management practices, such
as utilizing dedicated secret management systems (e.g., AWS
Secrets Manager or environment variables). Secrets must never
be directly stored in scripts or repositories. Scanning reposito-
ries for exposed secrets using tools like TruffleHog, Gitleaks,
or GitHub Secrets can help in secret leakage mitigation. In ad-
dition, credential scanning tools, such as Sniffer, can automate
the detection and remediation of hardcoded credentials.

Hardcoded Paths and URLs Mitigation involves replacing
absolute paths and URLs with relative paths, environment
variables, or centralized configuration files. Such practices en-
hance portability and adaptability across diverse development
environments and reduce security risks [89].

Inconsistent Dependency Management: Adopting con-
sistent version management through standardized properties,
dependency management tools (e.g., Maven’s BOM feature),
and unified policies significantly reduces inconsistency and
simplifies dependency updates [90].

Insecure URLs: Mitigating this involves enforcing HTTPS
protocols for all external connections within build scripts.
Automated scanning tools can continuously check build scripts
for insecure HTTP links, thus preventing man-in-the-middle
vulnerabilities.

Lack of Error Handling: Lack of Error Handling is
concerning in automated build environments where early de-
tection and halting failure are essential to maintaining soft-
ware quality. Continuing execution after an error may lead
to partially configured systems or incomplete dependency
states, increasing the risk of introducing latent vulnerabili-
ties. To address this, concrete error-handling policies within
build scripts are needed. A recommended mitigation strat-
egy involves configuring plugins to fail explicitly upon en-
countering errors (e.g.,<onError>fail</onError> and
<failOnError>true</failOnError>). In addition,
enforcing a fail-fast mechanism can help [91]. This approach
not only aligns with recommended practices in continuous
integration and DevSecOps but also supports reproducible and
verifiable builds [92].

Missing Dependency Version: Version specifications need
to be explicit to prevent unexpected dependency drift. Explicit
dependency management, including the practice of version
pinning and locking files (e.g., Maven’s dependency-lock
plugin), keeps the system consistent and helps in establishing
reproducible builds.

Outdated Dependencies: Unused dependencies, redun-
dant features, components, files, and outdated documentation
should be systematically removed to reduce maintenance over-
head and potential security risks [93]. Continuous dependency
monitoring, along with the use of automated update tools
such as Dependabot and Renovate, can help mitigate risks
with outdated libraries. Furthermore, maintaining a disciplined
update policy aids in the timely application of security patches.
Enabling automated pull request notifications may enhance
more frequent and consistent dependency upgrades [94].

TABLE V
SUMMARIZATION OF SMELL OCCURRENCES, SMELL DENSITY, AND PROPORTION OF SCRIPTS FOR THE FOUR BUILD TYPES

Code Smell Name Occurrence Smell Density (per KLOC) Proportion of Script
Maven Gradle CMake Make Maven Gradle CMake Make Maven Gradle CMake Make

Complexity 11 99 37 504 0.088 3.207 1.563 0.792 0.012 0.156 0.084 0.130
Deprecated Dependencies 95 217 11 13 0.757 7.029 0.465 0.020 0.103 0.342 0.025 0.003
Duplicates 139 116 19 0 1.108 3.757 0.802 0.000 0.151 0.183 0.043 0.000
Empty/Incomplete Tags 41 0 0 0 0.327 0.000 0.000 0.000 0.045 0.000 0.000 0.000
Hardcoded Credentials 8 47 3 217 0.064 1.522 0.127 0.341 0.009 0.074 0.007 0.056
Hardcoded Paths/URLs 373 279 25 664 2.972 9.037 1.056 1.044 0.406 0.440 0.056 0.171
Inconsistent Dependency Management 797 19 0 0 6.350 0.615 0.000 0.000 0.868 0.030 0.000 0.000
Insecure URLs 854 123 27 587 6.805 3.984 1.140 0.923 0.930 0.194 0.061 0.151
Lack Error Handling 303 4 25 988 2.414 0.130 1.056 1.553 0.330 0.006 0.056 0.254
Missing Dependency Version 121 24 41 278 0.964 0.777 1.731 0.437 0.132 0.038 0.093 0.072
Outdated Dependencies 319 87 18 19 2.542 2.818 0.760 0.030 0.347 0.137 0.041 0.005
Suspicious Comments 114 104 28 685 0.908 3.369 1.182 1.077 0.124 0.164 0.063 0.176
Wildcard Usage 9 142 103 2205 0.072 4.600 4.350 3.465 0.010 0.224 0.233 0.567
No Smells 34 177 251 1151

Fig. 2. Heatmap Of Code Smell Co-Occurrence In Build Scripts

Suspicious Comments: Developers should adopt clear cod-
ing standards discouraging inactive commented-out code and
establish regular peer-review practices to remove ambiguous
comments promptly. Furthermore, establishing clear guidelines
on the types of information that should be included in code
comments and enforcing these guidelines through code re-
views can enhance coding standards [23].

Wildcard Usage: A wildcard dependency may be help-
ful in the early phase of software development, but it has
downsides as the project progresses. While wildcards ensure

that dependencies are always up-to-date, they also introduce
risks by pulling in potentially unstable or breaking changes
without proper review [95]. Dependency versions should be
explicitly specified or use a floating range. Employing lock
files and version pinning would enhance reproducibility and
secure builds by preventing uncontrolled upgrades.

B. Implications of Findings

Our findings have several practical implications. First, the
prevalence of security-related smells (e.g., hardcoded secrets

and insecure URLs) suggests a need for greater security
awareness during build script development. Second, the pres-
ence of maintainability-related smells, such as missing version
information and inconsistent dependency management, points
to the need for improved tooling and standardization practices.
Organizations can adopt our tool as part of code review
to enforce best practices. Moreover, the detection of smells
across open-source repositories indicates that these issues are
widespread, underlining the need for ecosystem-wide adoption
of static analysis tools, such as Sniffer, to build systems for
better maintainability and reduce technical debt.

C. Future Work

While our work lays the foundation for detecting code
smells in build scripts, several directions remain for future re-
search. To enhance the tool’s detection capabilities, techniques
such as machine learning or natural language processing
could be integrated to improve its accuracy, especially for
context-sensitive or semantically subtle smells. Incorporating
contextual information such as project maturity, domain, or
deployment environment can help prioritize smells based on
impact and relevance. Expanding the tool’s applicability to
other build systems and configuration files, such as Bazel or
Ant, would broaden its utility. In this work, we focused on
zero-shot prompting to prioritize generalization and minimize
computational cost, as our goal was to use LLMs filtering
and exploratory support. In future work, the use of more re-
fined prompting strategies (e.g., few-shot, Chain-of-Thought)
may improve the LLMS detection performance. Additionally,
incorporating developer feedback or crowdsourced labeling
could refine detection accuracy and offer insights into how
developers interact with smells. Finally, longitudinal and cross-
project analyses may reveal patterns in how smells evolve over
time and vary across domains.

VII. ETHICAL CONSIDERATION

This study involved the analysis of publicly available open-
source build scripts collected from GitHub. No private or
personally identifiable information (PII) was accessed or used.
All data was handled in compliance with the platform’s terms
of service and policies [96]. We also obtained institutional
review board (IRB) approval for our user study. All data was
collected, handled, and stored in an institutional secure storage.
Our goal is to support the broader software engineering
community in improving build quality and security.

VIII. THREATS TO VALIDITY

In this section, we acknowledge and discuss the limitations
of our research findings:
Conclusion Validity: The identification and classification of
code smells in build scripts involved subjective judgment. The
initial extraction, categorization of smells, and mapping to
CWEs were performed manually by the authors, introducing
potential subjectivity. Different researchers might classify the
same code differently based on their experience and per-
spectives. However, to overcome the obstacle, we followed a

systematic way to validate our findings by multiple authors
involved in the coding and resolved the disagreement by
following established guidelines [57].

Internal Validity: We acknowledge the possibility of other
code smells existing within build scripts that were not iden-
tified in our study. To mitigate this threat, we analyzed
2134 build scripts across Maven, Gradle, Make, and CMake;
additional or context-specific smells may remain undiscovered.
In the future, we aim to expand our research by expanding the
dataset and exploring additional scripting contexts to enhance
the comprehensiveness of identified smells. The detection
accuracy of the developed tool is dependent on heuristic-based
rules and patterns defined during tool development. These
heuristics could produce false positives and false negatives.
To address this, we iteratively refined our heuristics through
continuous testing against manually validated scripts.

External Validity: Our findings are subject to limitations
in external validity, as the results may not be generalizable
beyond the studied build scripts. The tool is specifically
developed for certain build script types, and thus, findings
might not be directly extended to other build systems with
different syntactic or semantic structures. Furthermore, the
evaluation was conducted exclusively on open-source build
scripts obtained from GitHub repositories. The prevalence and
impact of the identified code smells may vary in proprietary or
enterprise environments, where development practices, quality
standards, and tooling ecosystems differ.

IX. CONCLUSION

Code smells indicate some recurring coding patterns that
occur frequently. Though it may not always have negative
effects, a code smell should still be taken seriously because it
could be a sign of future security and maintainability risk. In
this study, we performed an analysis of code smells in build
scripts through a mixed-methods approach combining qualita-
tive issue analysis and large-scale static analysis. By analyzing
5,882 build scripts from Maven, Gradle, CMake, and Make
across 4227 open-source GitHub repositories, we identified
13 categories of code smells, totaling 10,895 occurrences. Our
findings highlight that certain smells, such as Insecure URLs,
Hardcoded Paths/URLs, and Wildcard Usage, are particularly
prevalent across specific build systems. Furthermore, the co-
occurrence analysis revealed strong associations among spe-
cific smell pairs, suggesting the presence of systemic patterns
in configuration practices. These insights underscore the need
for improved tooling and development practices to detect and
address code smells in build automation scripts. To support
this, we proposed mitigation strategies aimed at improving
the quality, maintainability, and security of build processes in
modern software engineering.

ACKNOWLEDGEMENT

This work was supported and funded by the National Sci-
ence Foundation Grant No. 2207008. Any opinions expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] C. Désarmeaux, A. Pecatikov, and S. McIntosh, “The dispersion of build
maintenance activity across maven lifecycle phases,” in Proceedings
of the 13th International Conference on Mining Software Repositories,
2016, pp. 492–495.

[2] Zorian, “Best practices for syncing development environments:
A developers toolkit,” https://dev.to/zorian/best-practices-for-syncing-
development-environments-a-developers-toolkit-1o1b, 2024.

[3] “What is a build script?” https://www.deployhq.com/blog/
what-is-a-build-script, 2025.

[4] J. Sumrak, “Ultimate guide to ci/cd best practices to streamline devops,”
https://launchdarkly.com/blog/cicd-best-practices-devops/, 2024.

[5] “Stackoverflow developers survey,” https://survey.stackoverflow.co/2025/
technology/#most-popular-technologies, 2025.

[6] “Java,” https://www.jetbrains.com/lp/devecosystem-2020/java.
[7] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan, “An

empirical study of build maintenance effort,” in Proceedings of the 33rd
international conference on software engineering, 2011, pp. 141–150.

[8] F. Hassan and X. Wang, “Change-aware build prediction model for
stall avoidance in continuous integration,” in 2017 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 2017, pp. 157–162.

[9] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of java build
systems,” Empirical Software Engineering, vol. 17, pp. 578–608, 2012.

[10] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study of
the impact of code smells on software change-proneness,” in 2009 16th
Working Conference on Reverse Engineering. IEEE, 2009, pp. 75–84.

[11] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dybå,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1144–1156,
2012.

[12] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell detection
as a bilevel problem,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 1, pp. 1–44, 2014.

[13] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[14] F. Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman, “Technical
debt: Showing the way for better transfer of empirical results,” Perspec-
tives on the future of software engineering: essays in honor of Dieter
Rombach, pp. 179–190, 2013.

[15] A. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in 2012 28th IEEE international conference
on software maintenance (ICSM). IEEE, 2012, pp. 306–315.

[16] A. Yamashita and Moonen, “Do developers care about code smells?
an exploratory survey,” in 2013 20th working conference on reverse
engineering (WCRE). IEEE, 2013, pp. 242–251.

[17] J. Cordeiro, S. Noei, and Y. Zou, “An empirical study on the
code refactoring capability of large language models,” arXiv preprint
arXiv:2411.02320, 2024.

[18] D. Johannes, F. Khomh, and G. Antoniol, “A large-scale empirical study
of code smells in javascript projects,” Software Quality Journal, vol. 27,
pp. 1271–1314, 2019.

[19] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol, “An empirical
study of code smells in javascript projects,” in 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2017, pp. 294–305.

[20] A. Barrak, E. E. Eghan, B. Adams, and F. Khomh, “Why do builds
fail?—a conceptual replication study,” Journal of Systems and Software,
vol. 177, p. 110939, 2021.

[21] K. V. Paixão, C. Z. Felı́cio, F. M. Delfim, and M. d. A. Maia, “On the
interplay between non-functional requirements and builds on continuous
integration,” in 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR). IEEE, 2017, pp. 479–482.

[22] I. Saidani and A. Ouni, “Toward a smell-aware prediction model for
ci build failures,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW). IEEE, 2021, pp.
18–25.

[23] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 164–175.

[24] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia, “Detecting code smells using machine learning techniques: Are
we there yet?” in 2018 ieee 25th international conference on software

analysis, evolution and reengineering (saner). IEEE, 2018, pp. 612–
621.

[25] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory survey,”
in Proceedings of the 4th Workshop on Refactoring Tools, 2011, pp.
33–36.

[26] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the impact
of bad smells using historical information,” in Ninth international
workshop on Principles of software evolution: in conjunction with the
6th ESEC/FSE joint meeting, 2007, pp. 31–34.

[27] “Apache maven project,” https://maven.apache.org/guides/index.html,
Apr 2025.

[28] “Gradle 8.14,” https://docs.gradle.org/current/userguide/getting\
started\ eng.html, 2025.

[29] “CMake Documentation and Community,”
https://cmake.org/documentation/, 2024.

[30] “GNU make,” https://www.gnu.org/software/make/manual/make.html.
[31] S. Tenny, J. M. Brannan, and G. D. Brannan, “Qualitative study,” 2017.
[32] H. Liu, J. Jin, Z. Xu, Y. Zou, Y. Bu, and L. Zhang, “Deep learning based

code smell detection,” IEEE transactions on Software Engineering,
vol. 47, no. 9, pp. 1811–1837, 2019.

[33] A. Kovačević, J. Slivka, D. Vidaković, K.-G. Grujić, N. Luburić,
S. Prokić, and G. Sladić, “Automatic detection of long method and
god class code smells through neural source code embeddings,” Expert
Systems with Applications, vol. 204, p. 117607, 2022.

[34] S. M. Olbrich, D. S. Cruzes, and D. I. Sjøberg, “Are all code smells
harmful? a study of god classes and brain classes in the evolution of
three open source systems,” in 2010 IEEE international conference on
software maintenance. IEEE, 2010, pp. 1–10.

[35] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th international conference on
mining software repositories, 2016, pp. 189–200.

[36] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “A systematic
mapping study of infrastructure as code research,” Information and
Software Technology, vol. 108, pp. 65–77, 2019.

[37] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution
of the linux build system,” Electronic Communications of the EASST,
vol. 8, 2008.

[38] M. Kawalerowicz, “Classification of automatic software build methods,”
arXiv preprint arXiv:1305.4776, 2013.

[39] F. Hassan and X. Wang, “Hirebuild: An automatic approach to history-
driven repair of build scripts,” in Proceedings of the 40th international
conference on software engineering, 2018, pp. 1078–1089.

[40] C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta, “Automated
reporting of anti-patterns and decay in continuous integration,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 105–115.

[41] C. Zhang, B. Chen, J. Hu, X. Peng, and W. Zhao, “Buildsonic: Detecting
and repairing performance-related configuration smells for continuous
integration builds,” in Proceedings of the 37th IEEE/ACM international
conference on automated software engineering, 2022, pp. 1–13.

[42] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” in 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2013, pp. 268–278.

[43] G. Rasool and Z. Arshad, “A review of code smell mining techniques,”
Journal of Software: Evolution and Process, vol. 27, no. 11, pp. 867–
895, 2015.

[44] J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S. Do Nasci-
mento, M. F. Freitas, and M. G. De Mendonça, “A systematic review
on the code smell effect,” Journal of Systems and Software, vol. 144,
pp. 450–477, 2018.

[45] M. Fawad, G. Rasool, and F. Palma, “Android source code smells: A
systematic literature review,” Software: Practice and Experience, vol. 55,
no. 5, pp. 847–882, 2025.

[46] “Xz utils backdoor — everything you need to know, and what you
can do,” https://www.akamai.com/blog/security-research/critical-linux-
backdoor-xz-utils-discovered-what-to-know.

[47] C. Tozzi, “What is github and what is it used for?” https://www.
itprotoday.com/devops/what-github-and-what-it-used, Sep 09 2022.

[48] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “A systematic mapping
study of software development with github,” Ieee access, vol. 5, pp.
7173–7192, 2017.

[49] “Developer survey,” https://survey.stackoverflow.co/2024/technology#
1-programming-scripting-and-markup-languages.

[50] “31 code smells all software engineers must watch out for,”
https://pragmaticways.com/31-code-smells-you-must-know/, 2025.

[51] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,” Information and Software Technology, vol. 108, pp. 115–
138, 2019.

[52] J. Atwood, “Code Smells,” https://blog.codinghorror.com/code-smells/.
[53] “Static code analysis guide,” https://www.jetbrains.com/pages/static-

code-analysis-guide/code-smells.
[54] J. Saldaña, “The coding manual for qualitative researchers,” 2021.
[55] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu,

“Using of jaccard coefficient for keywords similarity,” in Proceedings of
the international multiconference of engineers and computer scientists,
vol. 1, no. 6, 2013, pp. 380–384.

[56] G. Guest, A. Bunce, and L. Johnson, “How many interviews are enough?
an experiment with data saturation and variability,” Field methods,
vol. 18, no. 1, pp. 59–82, 2006.

[57] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-
depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement,” Sociological methods & research, vol. 42,
no. 3, pp. 294–320, 2013.

[58] M. Tamanna, Y. Chandrani, M. Burrows, B. Wroblewski,
L. Williams, and D. Wermke, “Your build scripts stink: The
state of code smells in build scripts,” [Online]. Available:
https://doi.org/10.6084/m9.figshare.29203973, 2025.

[59] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[60] L. Williams, G. Benedetti, S. Hamer, R. Paramitha, I. Rahman,
M. Tamanna, G. Tystahl, N. Zahan, P. Morrison, Y. Acar et al., “Re-
search directions in software supply chain security,” ACM Transactions
on Software Engineering and Methodology, 2024.

[61] Z. Zheng, K. Ning, Q. Zhong, J. Chen, W. Chen, L. Guo, W. Wang,
and Y. Wang, “Towards an understanding of large language models in
software engineering tasks,” Empirical Software Engineering, vol. 30,
no. 2, p. 50, 2025.

[62] “CWE-Common Weakness Enumeration,”
https://cwe.mitre.org/index.html, 2025.

[63] H. O. Delicheh and T. Mens, “Mitigating security issues in github
actions,” in Proceedings of the 2024 ACM/IEEE 4th International
Workshop on Engineering and Cybersecurity of Critical Systems (EnCy-
CriS) and 2024 IEEE/ACM Second International Workshop on Software
Vulnerability, 2024, pp. 6–11.

[64] Z. Pan, W. Shen, X. Wang, Y. Yang, R. Chang, Y. Liu, C. Liu, Y. Liu, and
K. Ren, “Ambush from all sides: Understanding security threats in open-
source software ci/cd pipelines,” IEEE Transactions on Dependable and
Secure Computing, vol. 21, no. 1, pp. 403–418, 2023.

[65] “Conditional complexity,” https://luzkan.github.io/smells/conditional-
complexity.

[66] C. Miller, M. Jahanshahi, A. Mockus, B. Vasilescu, and C. Kästner,
“Understanding the response to open-source dependency abandonment
in the npm ecosystem,” in Int’l Conf. Software Engineering (ICSE),
IEEE/ACM, 2025.

[67] Z. Li, T.-H. Chen, J. Yang, and W. Shang, “Dlfinder: characterizing
and detecting duplicate logging code smells,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 152–163.

[68] “Duplicated code,” https://luzkan.github.io/smells/duplicated-code.
[69] J. Edmunds, “Please stop hard-coding file pathst,” https://medium.com/
[70] A. Rahman and L. Williams, “Source code properties of defective

infrastructure as code scripts,” Information and Software Technology,
vol. 112, pp. 148–163, 2019.

[71] E. Rescorla, “Rfc2818: Http over tls,” 2000.
[72] “Introduction to the dependency mechanism,” https://maven.apache.org/

guides/introduction/introduction-to-dependency-mechanism.html.
[73] “Using resolution rules,” https://docs.gradle.org/current/userguide/

resolution rules.html.
[74] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and

E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” arXiv preprint arXiv:1811.00918, 2018.

[75] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo or
to bug: Exploring how task annotations play a role in the work prac-
tices of software developers,” in Proceedings of the 30th international
conference on Software engineering, 2008, pp. 251–260.

[76] T. Sarker, “Drift Alert: Why Your Dependencies Are a Ticking
Time Bomb,” https://medium.com/@tirthasarker/drift-alert-why-your-
dependencies-are-a-ticking-time-bomb-34edcbb203d9, 2025.

[77] C. Soto-Valero, T. Durieux, and B. Baudry, “A longitudinal analysis
of bloated java dependencies,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 1021–1031.

[78] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu, and
S.-C. Cheung, “Do the dependency conflicts in my project matter?” in
Proceedings of the 2018 26th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, 2018, pp. 319–330.

[79] “Qualitative Research and Computers,” https://uh-
dcm.github.io/qualitative-research-and-computers/closed-coding/.

[80] R. Artstein and M. Poesio, “Inter-coder agreement for computational
linguistics,” Computational linguistics, vol. 34, no. 4, pp. 555–596, 2008.

[81] M. Vidoni, “A systematic process for mining software repositories:
Results from a systematic literature review,” Information and Software
Technology, vol. 144, p. 106791, 2022.

[82] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
pp. 3219–3253, 2017.

[83] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability assess-
ment of systems software,” in Annual Reliability and Maintainability
Symposium, 2005. Proceedings. IEEE, 2005, pp. 615–620.

[84] C. Rahmani and D. Khazanchi, “A study on defect density of open
source software,” in 2010 IEEE/ACIS 9th International Conference on
Computer and Information Science. IEEE, 2010, pp. 679–683.

[85] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th international
conference on Software engineering, 2005, pp. 284–292.

[86] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 682–691.

[87] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “A large-scale empirical study on the lifecycle of code
smell co-occurrences,” Information and Software Technology, vol. 99,
pp. 1–10, 2018.

[88] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: Counting those that matter,”
in Proceedings of the 12th ACM/IEEE international symposium on
empirical software engineering and measurement, 2018, pp. 1–10.

[89] R. C. Martin, Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2009.

[90] J. Humble and D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education,
2010.

[91] “Fail fast: A key principle for agile software development,”
https://medium.com/i-am-a-dummy-enlighten-me/fail-fast-a-key-
principle-for-agile-software-development-2229e996a993, 2023.

[92] “Continuous integration: Fail fast and fail first,”
https://sgibson91.github.io/blog/continuous-integration/.

[93] “mirhossi:2021 – Vulnerable and Outdated Components,” https://owasp.
org/Top10/mirhossi 2021-Vulnerable and Outdated Components/.

[94] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?” in 2017 32nd
IEEE/ACM international conference on automated software engineering
(ASE). IEEE, 2017, pp. 84–94.

[95] “The wildcard gamble: Understanding the risks of floating depen-
dency ranges in npm,” https://socket.dev/blog/the-wildcard-gamble-
understanding-the-risks-of-floating-dependency-ranges-in-npm, Septem-
ber 2024.

[96] GitHub, “Github acceptable use policies (7.information usage restric-
tions).”

