
Committed to Trust:
A Qualitative Study on Security & Trust

in Open Source Software Projects

Dominik Wermke∗, Noah Wöhler ∗, Jan H. Klemmer †, Marcel Fourné ‡, Yasemin Acar §, and Sascha Fahl ∗
∗CISPA Helmholtz Center for Information Security, Germany, {dominik.wermke,noah.woehler,fahl}@cispa.de

†Leibniz University Hannover, Germany, klemmer@sec.uni-hannover.de
‡Max Planck Institute for Security and Privacy, Germany, marcel.fourne@mpi-sp.org

§George Washington University, United States, acar@gwu.edu

Abstract—Open Source Software plays an important role
in many software ecosystems. Whether in operating systems,
network stacks, or as low-level system drivers, software we
encounter daily is permeated with code contributions from open
source projects. Decentralized development and open collabora-
tion in open source projects introduce unique challenges: code
submissions from unknown entities, limited personpower for
commit or dependency reviews, and bringing new contributors
up-to-date in projects’ best practices & processes.

In 27 in-depth, semi-structured interviews with owners, main-
tainers, and contributors from a diverse set of open source
projects, we investigate their security and trust practices. For
this, we explore projects’ behind-the-scene processes, provided
guidance & policies, as well as incident handling & encountered
challenges. We find that our participants’ projects are highly
diverse both in deployed security measures and trust processes,
as well as their underlying motivations. Based on our findings,
we discuss implications for the open source software ecosystem
and how the research community can better support open source
projects in trust and security considerations. Overall, we argue
for supporting open source projects in ways that consider their
individual strengths and limitations, especially in the case of
smaller projects with low contributor numbers and limited access
to resources.

I. INTRODUCTION

Open Source Software (OSS) is an unavoidable component
in many of today’s software ecosystems. Whether as low-level
system drivers in operating systems, as tooling in daily jobs, or
simply as dependencies of hobby projects, OSS is an important
building block in our everyday software interactions.

In a 2020 report covering 45,000 repositories, GitHub
found that most projects on their platform rely on some form
of OSS [1]. In recent years, collaborative version control
platforms such as GitHub [2] and GitLab [3] introduced a
wide field of developers to open source projects. As the
complexity of modern software development increased, so
did the number of dependencies and involved contributors.
Decentralized development and open collaboration of open
source projects introduce unique challenges: code submissions
from unknown entities, limited personpower for reviewing
commits and dependencies, and bringing new contributors up-
to-speed in projects’ best practices and processes.

Assessing vulnerabilities in components is a difficult task, as
the large number of dependencies required by today’s software
result in a complex software supply chain, including software
repositories, package managers, and package registries. The
median number of transitive dependencies in the npm ecosys-
tem was reported as 683 in a 2020 GitHub report [1]. In
addition to vulnerabilities in components, dependency sources
often lack basic security and trust controls due to historical
and economic reasons. Recent incidents in the npm ecosystem
highlight the large attack surface provided by such registries:
in late October 2021, versions of the npm package ua-
parser-JS with 7 million weekly downloads included malicious
code [4]. An attacker gained access to the maintainer’s account
and released three manipulated versions executing a Monero
cryptocurrency miner and password-stealing trojans [5]. Less
than a month later, GitHub reported an authorization vul-
nerability in npm, allowing attackers to publish manipulated,
authorized versions of their packages, which could actually be
applied to any npm package without authorization [6]. While
GitHub stated with “high confidence” that the vulnerability
had not been exploited maliciously, telemetry data was only
available from September 2020 onwards [7]. Analogous to a
2020 report from The Linux Foundation [8], we consider the
software supply chain in this work to include technical features
such as how the software is stored, how it can be retrieved,
and how it is analyzed during these processes.

The same holds true for commercial software: by building
their software as a wrapper or glue around open source compo-
nents, companies can leverage OSS as building blocks in their
processes and products, allowing them to focus their efforts on
features and faster delivery. In 2020, 95% of IT departments
and companies considered OSS as strategically important to
their organization’s overall enterprise infrastructure software
strategy [9]. By introducing open source components, compa-
nies inherit the same challenges and attack surfaces as open
source projects. They are now obligated to assess and mitigate
the impact of vulnerabilities from open source components
included in their products. As such, improving security and
trust in the open source ecosystem leads to positive effects

https://orcid.org/0000-0002-4172-9565
https://orcid.org/0000-0002-6994-7206
https://orcid.org/0000-0003-4442-0085
https://orcid.org/0000-0001-7167-7383
https://orcid.org/0000-0002-5644-3316
mailto:dominik.wermke@cispa.de
mailto:noah.woehler@cispa.de
mailto:fahl@cispa.de
mailto:klemmer@sec.uni-hannover.de
mailto:marcel.fourne@mpi-sp.org
mailto:acar@gwu.edu


down the whole dependency chain for both open source and
commercial software.

These chain effects make the open source ecosystem an
important field of research for the (security and privacy)
community. With the introduction of more developer-centered
research approaches arose the need for human-subject research
considerations. Recent conflicts between the research and open
source communities such as the “hypocrite commits” incident
in early 2021 highlight the need for more respectful research
approaches for investigating security and trust in open source
projects [10]. In this work, we propose a more cooperative
approach for researching open source, working together with
committers towards a more secure and trustworthy ecosystem,
instead of against them.

In addition to security, trust also plays an important role
in software development and especially the open source com-
munity, as was probably best described in Ken Thompson’s
Turing Award Lecture “Reflections on Trusting Trust”:

“To what extent should one trust a statement that
a program is free of Trojan horses? Perhaps it is
more important to trust the people who wrote the
software.” — K. Thompson [11].

As to err is only human, we consider contributors as trust-
worthy if they do not act with malicious intent, not necessarily
that they contribute error-free code.

In this work, we aim to shed light on security and trust
practices in open source projects — by exploring projects’
behind-the-scene processes, provided guidance and security
policies, as well as past security challenges and incident han-
dling. We are especially interested in processes that are often
not directly visible from the repository data, e. g., trust rela-
tionships, incident responses, and the handling of suspicious
or malicious contributors. For this, we conducted 27 in-depth,
semi-structured interviews with contributors, maintainers, and
owners from a diverse set of open source projects.

Our research approach investigates security measures and
trust processes in OSS based on the following research ques-
tions:
RQ1: “How are open source projects structured behind the
scenes?” Due to their community-driven nature, open source
projects include structures and processes that are not inherently
visible on a repository level. We investigate the why and how
of behind-the-scenes interactions and decisions, especially in
the context of security and trust.
RQ2: “If and what guidance and policies are provided by
open source projects?” Often changing contributors and loose
team structures lead to challenges in distributing project-
internal knowledge in open source projects. We examine
guidance and (security) policies provided by open source
projects of any size, as well as identify their established roles
and responsibilities.
RQ3: “How do open source projects approach security
and trust challenges?” Open source projects face unique
challenges in terms of security and trust due to their open
nature, including code submissions from mostly unknown

entities. We investigate which organizational and technical
measures open source projects employ to establish trust
between contributors and how they react or plan to react to
arising security and trust challenges.

This work is structured as follows: After this general in-
troduction (Section I), we discuss related work in the areas
of repository research, interviews in a security context, and
open source security and trust (Section II). We then describe
our interview approach (Section III) and highlight our findings
(Section IV). Finally, we discuss our findings (Section V) and
draw a conclusion (Section VI).

A. Replication Package
In line with the effort to support replication of our work

and help other researchers build upon it, this publication has
a companion website with a full replication package1 and an
artifact repository available.

II. RELATED WORK

We present and discuss previous work in three areas: re-
search involving data and artifacts from software repositories,
interview studies in a security context, and investigations of
security and trust in the open source community. We also put
our work into context and illustrate the novel contributions of
our research.
Research with Repositories: Open source repositories are
an established data source in the (security and privacy) re-
search community. This is corroborated by the large number
of available datasets, e. g., of commits [12]–[14], contribu-
tors [15], and vulnerabilities [16], [17], as well as easy access
via torrents [18], [19]. Early work describes case studies
of then emerging open source projects such as Linux [20],
Mozilla [21], and FreeBSD [22]. Due to freely accessible
code and commits, open source repositories are a common
source for vulnerability research, e. g., by matching Common
Vulnerabilities and Exposures (CVEs) [23], [24], tracking
vulnerability evolution over time or events [25]–[28], or for
evaluating static analysis tools [29]–[32]. Both Deligiannis et
al. and Bai et al. analyzed drivers in the Linux Kernel [33],
[34]. Fixes and patches are essential for ensuring a secure
codebase, motivating previous work to investigate fix patterns
and phases [35]–[37]. Piantadosi et al. linked 337 CVE entries
to the corresponding patches, finding that developers who
fix vulnerabilities are more experienced than average [38].
Related research focusing on social aspects investigated col-
laboration [39]–[41], gamification [42], donations [43], and
pull requests [44]–[46]. Recently published work investigated
repository artifacts such as programming languages [47],
maintenance [48], [49], toxicity in comments [50], and related
metadata [51], [52].

Unlike previous research focusing on repositories, we are
more interested in aspects that are not directly visible on
a repository level: trust processes, contributor hierarchy, and
security considerations.

1https://publications.teamusec.de/2022-oakland-sec-oss/

https://publications.teamusec.de/2022-oakland-sec-oss/


Interview Studies in a Security Context: Interview studies
are a well-established research approach for in-depth investiga-
tions in the (security and privacy) research community. In the
past, research has utilized interviews to gain insights into the
work and tools of experts such as security professionals [53],
[54], administrators [55], [56], and security analysts [57].
Interviews were also conducted to establish the security needs
of expert communities such as journalists [58], editors [59],
and victim service providers [60]. As part of larger stud-
ies, interviews allow insights into specific mindsets and ap-
proaches, e. g., for encryption tasks [61] or Tor usage [62].
More recently, Gutfleisch et al. interviewed developers about
security feature considerations in their software development
process [63]. In the context of OSS and communities, Dab-
bish et al. examined the value of transparency for large-
scale distributed collaborations and communities of practice
in interviews [39]. As part of a larger study, Steinmacher et
al. conducted semi-structured interviews with 36 developers
from 14 different projects, identifying social barriers faced by
first-time contributors [64]. Balali et al. interviewed mentors
of 10 OSS projects, identifying both challenges and strategies
related to recommending tasks for newcomers [65].

Similarly, we also decided on in-depth interviews for our
research approach to gain detailed insights into participants’
perceptions, behaviors, and reasoning.
Security and Trust in the Open Source Community: The
open source community faces unique security and trust chal-
lenges compared to other ecosystems, making them a valuable
subject for research [66]–[68]. Issues and commits are impor-
tant structural features in the open source community, enabling
evaluations of general statistics [69], security tactics [70], and
emotions [71]. Antal et al. investigated commits of Python and
JavaScript projects, finding that neither community reacts very
fast to emerging security vulnerabilities in general [72]. Bosu
et al. analyzed 267,046 code review requests from 10 open
source projects, finding that less experienced contributors’
changes were 1.8 to 24 times more likely to be vulnerable [73].
Published identification systems for open source projects in-
clude vulnerabilities [74]–[76] and toxic comments [77]. Trust
is an important factor in public software collaboration. Re-
search directions include trustworthiness measurements [78],
[79] and factors influencing trust [45], [80], [81]. In line with
our findings, prior research established (quality of) contri-
butions, reputation, and employing organization as important
trust factors. Code quality is an important factor for security
in open source projects, with previous research investigating
aspects such as code reviews [82], [83], quality assessment
models [84], and discrepancies between vision and actual
implementation [85]. Due to their important role in the open
source ecosystem, committers are the focus of multiple works,
e. g., for their pull requests [86], their motivations [87]–
[90], or contribution barriers [64], [91]. Other works propose
supporting aspects such as approaches for onboarding [65],
[92]–[94] and mentoring [65], [95]. Blincoe et al. proposed
a new method, reference coupling, for detecting technical
dependencies between projects, finding that most ecosystems

are centered around one project and are interconnected with
other ecosystems [96]. Casalnuovo et al. explored the evidence
for socialization as a precursor to joining GitHub projects,
finding developers preferentially join projects where they have
pre-existing relationships [97].

While our work utilizes certain repository artifacts to enrich
our research, our focus is more on in-depth details from 27 in-
terviews with contributors, maintainers, and project owners.
Like previous research, we consider the open source ecosystem
to be of major importance to the overall software world and
hope to leverage 27 in-depth interviews as first steps towards
supporting committers and maintainers in creating secure and
trustworthy projects.

III. METHODOLOGY

In this section, we provide an overview of our study
approach and the structure of the semi-structured interviews.
We also detail the qualitative coding process, report on our
data collection and ethical considerations, and discuss the
limitations of our work.

A. Study Setup

To gain insights into the inner workings of open source
projects, we conducted semi-structured interviews (n = 27)
with contributors, maintainers, and owners of open source
projects between July and November 2021. We decided on
in-depth interviews as our research approach, as we were
especially interested in processes that are often not directly
visible from the repository data, e. g., trust relationships,
incident responses, and the handling of suspicious or malicious
contributors.

Interview Guide: We based the initial interview guide on our
exploratory research questions. We also considered concepts
investigated in previous related work and adapted them to
our more in-depth interview approach. To establish additional
areas of research and for feedback, we consulted and piloted
the interview guide with open source contributors from our
professional network. For the participants’ convenience, we
created both English and German versions of the interview
guide, keeping both in sync during the study. During the
study process, we continually iterated the interview guide
based on the conducted interviews and the collected participant
feedback. Changes were limited to the addition of a few
follow-up questions and minor structural modifications, reach-
ing saturation without any changes past the 15th interview. Our
full interview guides in English and German are included in
the replication package (cf. Section I-A).

Recruitment and Inclusion Criteria: We based our recruit-
ment approach around reaching as many diverse OSS projects
as possible. We decided on utilizing multiple recruitment
channels to better reach a diverse set of projects from different
historical and structural contexts: via our professional network,
project- or technology-associated communication channels
such as mailing lists, Discord instances, or IRC servers, as
well as via contact details on public repository websites like



TABLE I: Detailed overview of interviewed contributors, their project background, as well as some project metadata. For
reporting, participants were assigned an alias. We only report binned project metrics to preserve both our participants’ and
their projects’ privacy.

Alias Interview Project1

Language Duration Codes2 Recruitment Channel Commits Contributors Category

P01 German 0:40:49 68 Professional Network 100,000+ 10+ Operating System
P02 German 1:03:51 76 Professional Network 1,000+ 10+ Secure Messenger
P03 German 0:53:49 57 Contact Email 10,000+ 100+ Virtualization/Containers
P04 English 0:33:59 62 Communication Channel 100+ 10+ JavaScript Libraries
P05 English 0:36:35 42 Contact Email 1,000+ 100+ Code Editor
P06 English 0:55:20 70 Communication Channel 100+ 10+ JavaScript Libraries
P07 English 0:33:16 54 Contact Email 100+ 10+ .NET Libraries
P08 English 1:06:18 67 Contact Email 100,000+ 100+ Operating System
P09 English 0:30:37 95 Contact Email 10,000+ <10 Version Control System
P10 English 0:23:35 36 Contact Email 10,000+ 100+ GUI Tool
P11 English 1:08:13 101 Contact Email 10,000+ 1,000+ Orchestration
P12 German 0:35:12 61 Professional Network 10,000+ 100+ Network Security Monitor
P13 English 0:29:23 39 Contact Email 10,000+ 100+ Scientific Computing
P14 English 0:19:44 38 Communication Channel 1,000+ 10+ Cryptocurrency Exchange
P15 German 0:26:32 44 Communication Channel 10,000+ 100+ Operating System
P16 English 0:46:19 48 Contact Email 10,000+ 100+ Code Analysis
P17 English 0:44:14 57 Contact Email 1,000+ 1,000+ JavaScript Libraries
P18 English 0:32:46 45 Project Website 1,000+ 10+ Scientific Computing
P19 German 0:40:59 40 Communication Channel 1,000+ 10+ Scientific Computing
P20 German 0:38:14 63 Communication Channel 10,000+ 100+ Network Protocol
P21 English 0:38:25 43 Contact Email 1,000+ 100+ Virtualization/Containers
P22 English 0:37:09 73 Contact Email 1,000+ 100+ Data Format
P23 English 0:23:19 62 Contact Email 10,000+ 100+ Virtualization/Containers
P24 English 0:39:35 57 Contact Email 100+ 100+ Orchestration
P25 English 0:52:23 83 Project Website 10,000+ 1,000+ Operating System
P26 English 0:33:23 59 Contact Email 10,000+ 100+ Scientific Computing
P27 English 0:37:52 78 Contact Email 1,000+ 100+ Scientific Computing

1 If multiple projects: largest project covered in the interview. 2 Total number of codes assigned to the interview after resolving conflicts.

GitHub. See also Table I for an overview of interviewed
participants and corresponding recruitment channel.

Aside from our professional network and well-known open
source projects, we utilized GitHub as a platform for selecting
and contacting open source projects. We focused on GitHub,
as it is widely used in the open source community and provides
relevant metrics for gauging the activity as well as popularity
of a project. We created our initial dataset based on data
from July 2021, consisting of code repositories that received
at least 40 commits from at least 20 distinct committers in
the previous six months and gained new committers in July
2021. Our intent was to exclude inactive projects or small
projects without contributors, for which our inquiry would
either not reach active contributors or in which trust processes
are irrelevant. The detailed selection process and criteria are
described in the replication package (cf. Section I-A) and
Appendix (cf. Appendix A). We then joined popularity and
activity indicators to a combined ranking and divided the set of
projects into quartiles, from which we then iteratively selected
and contacted projects until we reached interview saturation:

1) Communication Channel. If the project provided a public
communication channel such as a Slack workspace, Dis-
cord server, or Gitter chat, we asked the administrators
for permission to post a call for participants.

2) Contact Email. Otherwise, we either contacted the
project’s contact email or the project’s top contributor

by number of commits in the past year via their public
email address.

In addition to these channels, we asked our participants for
their recommendations of interesting or unique open source
projects, which we then contacted via the approaches described
above.

Due to the previous filtering, we did not require any addi-
tional eligibility criteria from our participants beyond stating
that we were looking for people involved in OSS. In total,
we recruited 27 participants from equally as many distinct
projects.

Interview Procedure: We conducted the 27 interviews in
a lead/backup interviewer configuration between July and
November 2021. To afford our participants a high level of
comfort during the interview, we offered them the choice to
conduct the interview either in English or German, as all
interviewing researchers were proficient in both languages. We
conducted the majority of interviews via our self-hosted Jitsi
instance, though a few interviews were conducted via Zoom or
the participant’s service of choice. Interviews were advertised
as lasting between 30–45 minutes in total, with the interview
part lasting a median of 00:37:52 minutes.

The different interview sections were introduced with an
open, non-leading question, allowing participants to elicit their
own thoughts and reactions on their terms. Only if specific
points were not addressed, we followed up with a more spe-



Intro
Introduction to the interview and obtaining verbal consent.

1. Project Demographics
Establish project context and role of participant.

2. Security Challenges
Explore security challenges the project faced in the past.

3. Guidance and Policies
Identify guidance and best practices available to contributors,
content and applicability of security and disclosure policies.
Establish practices around (security) testing and reviews.

4. Project Structure
Establish repository setup, build process and control, and
supply chain handling.

5. Releases and Updates
Establish release and update processes and responsibilities,
explore handling of security-relevant updates.

6. Roles and Responsibilities
Identify the maintainer and contributor hierarchy of the
project.

7. Trust Processes
Establish trust models and explore past trust incidents and
trust strategies of the project.

8. Opinions and Improvements
Explore participants’ views of problems and potential
improvements.

Outro
Debrief and collect feedback for the interview.

Fig. 1: Illustration of the flow of topics in the semi-structured
interviews. In each section, participants were presented with
general questions and corresponding follow-ups, but were
generally free to diverge from this flow at will.

cific, non-leading sub-question. Interviewers were specifically
instructed not to impart a sense that the project’s security or
insecurity was being judged and to not prime participants’
answers in other ways.

B. Interview Structure

We outline our semi-structured interview structure below
and in Figure 1. For reporting, we group the interview into
eight sections, each consisting of 1–4 opening questions, cor-
responding follow-up questions, and in some cases additional
nudges.

Before the actual interview part, we gave a short in-
troduction of involved institutions and our motivations. We
specifically highlighted to participants that our goal is not to
judge the security of their projects, that it is okay not to be
aware of all aspects of a project, and that we are explicitly

interested in their personal thoughts and opinions. We went
over how we intend to collect and handle the interview data
and obtained the participant’s consent for recording and data
handling.
1. Project Demographics: The interview opens with a general
question section about the project and our participant’s relation
to it. This section is intended both to ease nervous participants
into the interview as well as establish some initial context
to later combine with actual repository data. We report the
demographics and combined data in Section IV-A and Table I.
2. Security Challenges: The “Security Challenges” sec-
tion explores past security challenges encountered by our
participants, as well as their opinion of a recent research
conflict. To open this section with an example of a recent
incident and to ease participants into this sensitive topic, we
queried them about, and if necessary introduced them to, the
“hypocrite commits” incident from early 2021 [10], [98], [99].
The incident is a recent, widely publicized example of well-
intentioned actions resulting in potentially adverse outcomes.
We selected this incident because we suspected that projects
are more familiar with well-intentioned commits turning sour,
compared to straight-up malicious attacks. We report these
results in Section IV-B.
3. Guidance and Policies: The “Guidance and Policies”
section establishes guidance provided for and policies enforced
by participants’ projects. Follow-ups for guidance included
specific guidance for infrastructure, programming style, and
cryptography usage. Follow-ups for policies included the (co-
ordinated) disclosure approach of the project, potential poli-
cies for handling security incidents, and policies for security
aspects such as enforced (security) reviews. We report these
results in Section IV-C.
4. Project Structure: The “Project Structure” section in-
vestigates behind-the-scenes structures and processes in the
project. Specifically, we were interested in structures that are
often not directly visible from repository artifacts, such as
how build and deploy steps are set up, who controls them,
and how the related secrets are managed. We also included
follow-ups for supply chain handling such as selection criteria
and vulnerability checks for dependencies. Lastly, we asked
participants about additional infrastructure such as project
websites and communication tools, as well as who controls
these resources. We report these results in Section IV-D.
5. Releases and Updates: The “Releases and Updates”
section explores release mechanisms within the project as
well as how end users or downstream dependencies receive
updates to the latest version, with a special focus on security-
relevant fixes. In particular, we were interested in release
schedules, whether there were guidelines in place regarding
the deprecation of older (insecure) versions, as well as if and
how release binaries are secured. We report these results in
Section IV-E.
6. Roles and Responsibilities: The “Roles and Responsibili-
ties” section establishes the contributor hierarchy and security
roles of the project. We were especially interested in how



decisions are formed and whether security-specific roles are
assigned. We report these results in Section IV-F.
7. Trust Processes: The “Trust Processes” section considers
established trust models in the project and how recently
onboarded contributors can become trusted members. Follow-
ups included questions about identity checks or the mandatory
signing of Contributor License Agreements (CLAs). Addition-
ally, we asked the participants about past trust incidents and, if
applicable, what their mitigation strategy looked like. In cases
without such an incident, we asked participants about their
opinion on what would happen if an incident occurred. We
report these results in Section IV-G.
8. Opinions and Improvements: The “Opinions and
Improvements” section aims to elicit participants’ personal
opinions and beliefs about current open source practices
regarding security and trust and how they would personally
approach improving the status quo. We report these results in
Section IV-H.

After the interview part, we debriefed the participants and
collected additional feedback regarding covered topics and
suggestions for interesting or unique open source projects to
contact.

C. Coding and Analysis

For our study with interviews and repository artifacts,
we evaluated both qualitative and quantitative data points.
We recorded the interviews digitally, transcribed them via
a GDPR-compliant service, and manually reviewed all tran-
scripts for potential mistakes.

We analyzed all interview answers in an iterative open-
coding approach [100]–[102]. All researchers together es-
tablished an initial codebook based on the interview guide
and interview impressions. Three researchers then iteratively
coded the interviews in multiple rounds, resolving conflicts
by consensus decision or by introducing new (sub)codes
after each iteration. We continued with our iterative coding
approach until no new codes or themes emerged [103], [104].
This approach does not necessitate the reporting of inter-
coder agreement, as each conflict is resolved when it emerges
(resulting in a hypothetical final agreement of 100%). In total,
we assigned 1618 codes after resolving, resulting in a median
of 59 codes per interview. The final codebook is included in
our replication package described in Section I-A.

D. Ethical Considerations and Data Protection

This experiment was approved by the human subjects re-
view board (IRB equiv.) of our institution. Research plan,
study procedure, and all involved parties adhered to the strict
German data and privacy protection laws, as well as the EU
General Data Protection Regulation (GDPR). In addition, we
modeled our study to follow the ethical principles of the Menlo
report for research involving information and communications
technologies [105]. All documents with personally identifiable
data according to the GDPR were stored in a secure cloud
collaboration software suite and were encrypted at rest and

in transit. The transcription service we leveraged is based
in the EU and fully complies with the GDPR. Our research
approach agrees with the Researcher Guidelines for the Linux
developer community introduced in response to the “hypocrite
commits” incident in late March 2022, after the conclusion of
our work [106].

We encouraged potential participants to familiarize them-
selves with consent and data handling information on a study
website before agreeing to any interview participation. We ob-
tained informed consent from all participants for participation
in the study and having their interview’s audio recorded. We
contacted participants with a preprint and gave them an oppor-
tunity to suggest changes or veto this work in its current form.
Before, during, and after the interview, (potential) participants
were able to contact us at listed contact addresses for any
questions or additional information. We consider the interview
questions regarding certain security incidents to be of sensitive
nature and explicitly highlighted to the participants that they
could skip questions or terminate the interview at any time.
Our participants did not receive any compensation, since we
surmised that open source contributors likely would be more
inclined to volunteer their time to research if they act out of
intrinsic motivation.

E. Limitations

Our work includes a number of limitations typical for this
type of interview study and should be interpreted in context.
In general, self-report studies may suffer from several biases,
including over- and under-reporting, sample bias, and social-
desirability bias. We do note that our sample is a convenience
sample and that our participants are not necessarily representa-
tive of contributors in the open source ecosystem. It is possible
that contributors who agreed to speak with us are more (or
less) security-conscious than those who declined.

During sampling, we focused on projects providing an En-
glish Readme document. We also offered and conducted seven
interviews in German for participants’ convenience. Thus,
we can offer no direct insight regarding the generalizability
of our results w.r.t. non-English and non-German speaking
open source contributors. During modelling of our study, we
decided that this was an agreeable trade-off, with English
serving as the “working language” of the international open
source community, likely allowing us to communicate with a
meaningful set of contributors.

Certain questions, e. g., about security and trust incidents,
can be considered to be of sensitive nature. To reduce social-
desirability bias in answers, we specifically highlighted to
participants that we were only interested in information about
their projects and not judging their security approaches and
processes in any way. We also instructed participants that they
were able to skip questions or to terminate the interview for
any reason at any time.

IV. RESULTS

In the following section, we report and discuss results for
27 semi-structured interviews with open source contributors,



maintainers, and owners. In our reporting, we mostly adhere to
the structure of the interview guide described in Section III-A
and summarize our key findings after each question block.
We report participants’ quotes as transcribed, with minor
grammatical corrections and omissions marked by brackets
(“[. . .]”). Quotes from German interviews were translated to
English by native German speakers.

A. Project Demographics

In total, we interviewed 27 valid participants. In addition
to this section, we report general interview and project de-
mographics in Table I. As it is common in the open source
community to be involved in multiple projects, we encouraged
our participants to talk about the projects they considered most
relevant during the interview. For the collected quantitative
data, we considered the largest project mentioned during
the interview, as a trade-off between concise reporting and
applicability.

Due to our recruitment approach aiming for a high diversity
in projects, our participants reported a wide range of projects
and backgrounds, ranging from operating system components,
over libraries, to scientific computing frameworks. For each
individual participant, we report project categories and com-
mits of the largest project they mentioned in Table I. Project
contributors are often highly distributed, with five of 27
participants reporting to know other contributors only virtually.
E. g., as P17 reported: “Everybody that I’ve encountered has
just been virtually: I can see the profile picture of some people,
and that’s the only image I have of them.” (P17). Although
this does not seem to impair collaboration: “But to be honest,
I don’t really mind. As long as one has the same interests, it’s
still easy to collaborate if you have the same goal.” (P17). At
the other extreme, four participants mentioned very close con-
nections such as working at the same company or university.
We sorted our participants into their highest project role with
a roughly ascending order of responsibility: contributors (4),
maintainers (3), team leaders (7), and founders or owners (9).

Overall, we found our participants to be more experienced
than we expected, often having been involved for multiple
years and possessing high-level commit rights. We assume this
high level of experience was due to our recruiting focusing
on “expert channels” such as project-specific communication
channels or dedicated contact addresses, as well as being
referred further up in projects until reaching founders and
owners.

Summary: Project Demographics. The majority of our
participants are highly experienced in the open source
environment, often with multiple years of work and high-
level commit rights.

B. Security Challenges

In this section, we explore past security challenges en-
countered by our participants as well as their opinion of
the widely reported “hypocrite commits” incident. More than
half (16) of our participants reported never having encountered

a direct security incident in the past. The most commonly
reported security challenges (that did not necessarily lead to an
incident) included: suspicious or low quality commits (15) and
vulnerabilities introduced by dependencies (8). Overall, our
participants seem to be mostly ambivalent about potentially
malicious commits: “I mean, there’s definitely been people
that have intentionally tried to put malicious code in projects,
but it’s always very easy to spot immediately. It’s like those
spam emails where they have bad grammar and stuff.” (P06).
Same holds true for vulnerabilities in dependencies, which
apparently often turn out to be false positives or to be irrelevant
for participants’ projects:

“Most of the time, the vulnerabilities I deal with
are transitive dependencies, have a CVE, and 99.99
percent of the time, they are false positives for
every other use case: it’s a real vulnerability in the
dependency, but it’s not in the way almost anyone
uses it.” — P06.

The majority of our participants were aware of the “hyp-
ocrite commits” incident in early 2021 (23 of 27). For the
remaining four, we provided a short, factual summary of the
incident during the interview. Of the 16 participants with a
generally negative opinion of the incident, many considered
the research approach as outright malicious: “[t]he shocking
and surprising part was, that an academic institution would
essentially do evil and justify it by saying that the ends justify
the means.” (P06). This is likely a misconception, as the
researchers stated that they did not intend to, and objectively
did not, introduce any vulnerability in Linux [10]. Of the
remaining participants with a mixed (7) or no opinion (4),
some considered the research approach similar to that of a
“White Hat Hacker”, although with a flawed execution. E.g., “I
do understand both sides of this [. . .] It would be much better
if this kind of research was done in cooperation with somebody
at the Linux kernel, who knew that it’s happening and without
disclosing that to a lot of people.” (P11). We could not identify
a single participant with an outright positive opinion of the
incident. We assume this skew was likely exaggerated by the
generally negative, sometimes misinformed reporting by open
source aligned news sources and communities.

Summary: Security Challenges. Only few projects have
experienced an outright security incident, although many of
our participants were familiar with suspicious or low quality
commits as well as potential vulnerabilities introduced
by dependencies. The majority of our participants were
generally aware of the “hypocrite commits” incident and
had an overall negative opinion of the research approach.

C. Guidance and Policies

In this section, we examine guidance and best practices pro-
vided by the projects, as well as the content and applicability
of security and disclosure policies.
Guidance: Most commonly, our participants mentioned guid-
ance for contributing to the project (14) and programming
language-specific guidance such as style guides (13), followed



by general guidance for project setup and infrastructure (8).
As reasons for not providing specific guidance documents,
participants mention time and money constraints: “Somebody
would have to write the guide, and I am the only one who can
write it. I mean, there is nobody paid to write it and I am also
not paid to write it.” (P26). More generally, our participants
are somewhat divided in their opinions of the helpfulness
of guidance for their projects, ranging from very positive:
“I personally think that documentation is one of the most
important aspects of an open source project, both for users and
also developers.” (P27), to less helpful, as for P02’s project:
“I’m also honestly not quite sure that’s really that helpful [. . .]
Of course, it’s quite nice to have overviews and stuff like that
somewhere, but there aren’t too many people who then read
something like that.” (P02). Instead, P02 mentions that they
prefer to coach new contributors: “Most of the people who
are interested show up in the communication channels. And
then it depends on [project members] being communicative by
helping the other person.” (P02). Similarly, P11 mentions an
approach outside of classical guidance documents: “We answer
very detailed answers to questions of users, which then become
the kind of searchable result of answers for guides, including
security fixes.” (P11). This difference in approaching guidance
appears to be between projects with a more technical developer
audience preferring coaching or static testing, vs. projects
with less technical contributors such as scientists preferring
extensive guidance, although our interview coverage of these
aspects was too low to statistically confirm this.

Security Policies: Next, we were interested in the content
and applicability of our participants’ security and disclosure
policies. Of our 27 participants, eight mention that their
projects do not have specific security policies. P06 offers one
possible explanation for this:

“So in the same way as people don’t make a security
policy on their repo unless something pushes them to
do it or unless they have a security incident, people
aren’t going to document security best practices
unless they’ve had a problem. Part of that is because
they may not know to do so. But part of that is also
because is there a need?” — P06.

The most commonly mentioned security policy aspect (10)
was related to providing a security-specific contact for the
project and/or to a dedicated security team. Less common
security policies include air gapping: “The policy of [the
project] is that any released software has to be built on
a machine controlled by the release manager.” (P11) and
programming language-specific policies: “Everything that is
related to crypto or network code or parsing and so on is all
written in Rust. That’s already a kind of policy.” (P02).

Only four of our participants explicitly mentioned not
having any form of disclosure policy or security contact.
Disclosure approaches mentioned by the other participants
included a policy or plan for coordinated disclosure (10), pri-
vate channels for disclosure (5), and plans for full disclosure,
e. g., as public issue (2). The often heated debate regarding

coordinated disclosure in open source projects extends to our
participants: “[the projects] say: we’re just putting our users
at too much risk. We’re not sitting on patches, the people
out there have installations on the front line, and because
somebody likes to coordinate something, we’re not waiting
three months longer.” (P01).
Testing and Reviews: Being closely related to policies, we
also queried our participants about their security testing and
review setup, with many participants mentioning automated
tests and mandatory reviews: “There are standard practices
like there is a test suite, we’ve unit tests, integration tests, and
as soon as we find any bugs or you write regression tests and
there are codes, there’s peer reviews of our codes and larger
reviews of bigger PRs as well.” (P05).

Summary: Guidance and Policies. Our participants appear
to diverge in their opinions regarding the helpfulness of
(written) guidance. For security policies, larger projects
mentioned dedicated security teams, while smaller projects
mentioned a security contact channel. Most projects in-
cluded some type of disclosure policy or at least contact
for security issues.

D. Project Structure

With this section, we wanted to explore structures that
are often not directly visible from repository artifacts, such
as how build and deploy steps are set up, selection criteria
and vulnerability checks for dependencies, and any additional
infrastructure such as project websites and communication
tools. The specific project setups appear to be as diverse as
our participants’ projects. As probably expected of open source
projects, most development approaches appear to be somewhat
open:

“It’s an open-source project, everything from [build]
stages to CI is in the same repository, and everyone
can contribute to it. However, no one has direct
control over anything because everything executed
is a series of scripts and tests in the main reposi-
tory, meaning that anyone can send a pull request
tomorrow and modify them.” — P25.

Code submissions are at the heart of open source collabo-
ration, making pull request handling and build pipeline setup
part of the overall security and trust strategy.
Pull Requests: Specifically for incoming pull requests,
projects provide a number of controls, e. g., by protecting the
main branch: “The main branch is protected. Of course, we do
everything through forks. Meaning, each developer has their
own fork, opens a pull request and there’s a limited number
of people who have the permissions to do the final merge.”
(P19).

Our participants opt for a number of different strategies
for merging code contributions, such as only rebasing on
main: “We actually always require from the author to rebase
their changes on top of the main, so that we don’t have the
whole complex structure of merges [. . .] which actually helps
to pinpoint any kind of problems [. . .]” (P11), a majority



vote before merging pull requests: “So on each PR you
can review it and then give a thumbs-up or thumbs-down.
And that’s done by at least three of the main contributors,
[. . .] and that means that it’s a majority of them think that
it’s a worthy contribution.” (P17), or an optimistic merging
approach with resolving problems in follow-up pull requests:
“[Y]ou optimistically merge code as long as it passes some
basic sanity checks. If someone thinks that the code which is
merged isn’t actually perfect, there is some way to improve it,
they need to send a follow-up pull request.” (P16). Overall,
project structure and code submission handling appear to be
specialized to the project’s needs and community.

Build Pipeline: In the interviews, 23 participants mentioned
using CI/CD or or other automatic build systems in their
projects, with the majority relying on GitHub Actions (10).
Aside from GitHub Actions, many different systems were
mentioned, sometimes even within the same project: “But
basically we use everything, like Travis, Azure Pipelines,
GitHub Actions, CircleCI, custom build machines and so
on. It’s quite a hodgepodge.” (P02). A few participants (3)
mentioned that they prefer manual builds and publishing for
a number of reasons, e. g., “I don’t like the one click deploy,
I like to actually see, you know, things fly by in the console.”
(P04). Running tests as part of the build pipeline is a common
practice, with some of our participants taking advantage of
this, e. g., “[. . .] we have a huge number of tests, actually.
More than 10,000 tests and 70 static check analyses.” (P11)
and “Every pull request automatically goes through our full
test suite [. . .] There are at least 1,000 files, each testing one
area.” (P12). Thoroughly testing every commit might include
some trade-offs in the context of attracting contributors, as
pointed out by P16: “If the tests run in five seconds, then
people will contribute, if the tests run in five hours, then people
will contribute less.” (P16).

Only four participants mentioned that they PGP sign com-
mits in their projects, although not always for security rea-
sons: “I PGP sign all my commits. The main reason I do
that is because it gives me a pretty little verified badge on
all my commits.” (P06). Reasons for not signing commits
included technical limitations: “[Commit signing] is one of
the things that is rather difficult to do if you are using the
GitHub workflow” (P11) and different workflows: “I don’t
make everybody do it, because eventually, the commit will get
squashed when I merge it, and then it’s going to be signed
by GitHub automatically.” (P24). Some of these issues might
be alleviated by a recent Git patch introducing SSH-based
signatures and verification, although it remains to be seen if
and how collaborative platforms will adapt.

Dependencies: Common criteria for selecting a dependency
included activity: “Our most important criteria, in general, is
that we do not want to rely on inactive projects.” (P25) and
reputation metrics like GitHub stars: “If somebody was pulling
in a package and I go to their GitHub and its got two stars
and it’s only used in this project, I’m probably going to say:

‘Let’s avoid using that’.” (P24). Other participants had more
involved criteria for including a dependency:

“What I usually do before including any dependency
is I send them a pull request fixing something. And if
they don’t react on this or don’t merge that one, then
they don’t become my dependency because they are
obviously not interested in improving the software.”
— P18.

Some of such elaborate selection criteria even benefited all
involved parties: “As it happened also with [dependency]:
we reached out, we got a good response. We worked on
a few issues together, even I personally fixed one of those
issues [. . .]” (P11). Few mentioned that they manually review
third party dependencies: “Whenever we include a library in
a project, we examine the project beforehand and two or
three core contributors actually need to confirm that it looks
okay.” (P03). One participant mentioned looking for usages of
specific language features that may affect security: “I always
go to the source code. I searched for all uses of unsafe and I
check if they are, if they are like, if they make sense or not.”
(P22).

Summary: Project Structure. Our participants appear to
fully utilize modern build systems, including during testing
and deployment. Only few projects explicitly use signed
commits, often due to incompatibilities with their workflow
or threat model. Selection criteria for dependencies range
from readily available metrics over security reviews, to
elaborate collaborations or even rewrites.

E. Releases and Updates

In this question section, we were interested in the projects’
release decisions and schedules, whether there were guidelines
in place regarding release deprecation, how the releases are
distributed, and whether releases are digitally signed. The
release decisions of our participants broadly fit into two
approaches: either as periodical releases (9) or when specific
features or patches are ready (10). Different communities
seem to favor different release approaches, as our participants
describe both feature-driven and cycle-driven release schedules
based on community input: “Periodically, we’ll reach consen-
sus in the community, and say, ‘Hey, we ought to do a release’,
and so we’ll stop developing for a few days and just make sure
there aren’t any major bugs.” (P09) and “We try to aim for
three times a year, mostly because the real reason for the three
times a year rough cycle is that we polled the community and
the kind of the averaging that three times a year seemed like
what suited people the most.” (P13). Some participants utilize
both approaches, depending on, e. g., project maturity:

“Mainline development continues just normally under
main branch, and we have this temporary release
branch where we merge in only bug fixes that come
in during this time. This is for the most mature
projects [. . .] For projects that move faster and don’t
have for example, back-holding strategy for bugs



and stuff like this, we basically once a month tag
a version and push them out.” — P18.

Aside from set release windows, participants often mentioned
a more flexible approach to vulnerability fixes, e. g., “If you
have a vulnerability, Spectre, Meltdown, or something like
that, then it can also happen that updates are released
completely unscheduled.” (P01).

The majority of our participants does not seem to specifi-
cally advertise new releases, e. g., “Most people who interact
with this project don’t actually even look at my GitHub. They
don’t look at the release assets or anything like that, they just
use [package registry] and it just works from there. They pull
it down and use it automatically.” (P24). Of the ones that
do advertise, preferred channels included social channels like
Twitter, Slack, or IRC (3), mailing lists (3), and websites (2).
Again, our participants seem to prefer a practical approach for
deprecating insecure or out-of-date releases, e. g., by simply
stopping support: “We only guarantee that we will backport
security fixes to the last two releases. So anything before
that is not an LTS we will not fix, which could be seen
as deprecated from this point of view.” (P25) and “I don’t
have any official policy of supporting old versions, so they’re
effectively deprecated as soon as I release a new version.”
(P27).

For distributing releases, 12 participants specifically men-
tion that they utilize external infrastructure such as reg-
istries, app stores, or package managers. As a reason for not
distributing binary releases, P15 points to their community
composition: “We have no [binary] releases. We always build
the project ourselves, there are no pre-built binaries for end
users, because there are practically no end users.” (P15), as
well as P25: “All of our releases are done on GitHub tags,
because we release via source code, not via binaries, so it’s
a software release in the form of a git tag.” (P25).

Of our participants, 11 were aware of their projects’ releases
being signed. Their reasons for not or not correctly signing
releases included technical limitations:

“The Mac build is signed by my developer key, but
the builds for Raspberry Pi, Linux, Windows, they’re
unsigned. People just have to trust the integrity that
I’m the only person who has access to those and I
did it right. We’d love to have better solutions for
that, but none are available right now.” — P09,

Another reason was their general signing setup, which lead to
key ownership problems:

“[. . .] because our release procedure checklist only
states sign, meaning sign them in general. So people
use their GPG signing keys, and there is no control
where and how those keys are verified or belong to
a particular key ring. So this is something we need
to improve.” — P25.

Generally, our participants seem to be aware of the security
benefits of signing and releasing checksums of releases, but
some are not utilizing it for (all) releases due to technical
limitations and platform restrictions.

Summary: Releases and Updates. Our participants mostly
publish projects’ releases and updates based on direct com-
munity input and feedback, often mentioning exceptions
from their usual schedule for vulnerability fixes. Release
distribution and deprecation appear to be oriented towards
practicality, utilizing package registries and other distribu-
tion infrastructures, again depending on the needs of their
users.

F. Roles and Responsibilities

In this section, we sought to establish what hierarchies exist
between contributors in the participants’ projects and how they
affect the decision making process. We were also interested
in roles that directly deal with the projects’ security and role-
specific duties.

Somewhat unsurprisingly, participants involved in projects
with corporate stakeholders frequently mentioned sophisti-
cated management structures that oversee the project’s de-
velopment: “At the top of the pyramid, there’s the PMC,
the project management committee and they’re essentially the
people who either funded the project or major industrial, or
representatives of major industrial partners.” (P13). Most of
our participants described the contributor hierarchy in their
projects as having two levels: The core team that is tasked
with reviewing code submissions and that has permissions to
merge new code into the source tree and everyone else whose
code is subject to the code review process. The core team was
often called a group of maintainers or simply committers:

“There’s two classes of contributors. There are the
maintainers and then there’s pretty much everyone
else. The maintainers are me and maybe seven other
people who contribute regularly to the project [. . .]
They can push directly to the main branch of the
project.” — P13.

Other projects make a distinction between the core team and
the project’s owners or they even have a dedicated role for
developers who have the ability to manipulate the repository
itself, e. g., by pushing to branches corresponding to pull
requests: “[. . .] then there are about [a few] people who have
maintainer status, so they can merge requests. And then there
are about a hundred people who have developer access, so
they can push to a branch inside the merge request.” (P26).
Some projects take centralization further and follow the so-
called Benevolent Dictator for Life (BDFL) model, where the
project’s founder steers the overall direction of the project and
has the final say in disputes: “[The project] is what [one of
our contributors] has dubbed a do-ocracy, and that is basically
whoever’s writing the code gets to decide how it’s done, but
our benevolent dictator has the final say so. We essentially
have this benevolent dictator, and everybody else under that.”
(P09). Participants whose projects have not grown out of
corporate contexts often mentioned a more relaxed contributor
structure, with direct influences on the code review process:

“It is basically a much more peer-to-peer structure
than a hierarchical structure. If you develop some-
thing, you don’t need to submit it to somebody to



get it into the tree. You do need to get a review from
people who are competent in this area, but that’s
all.” — P08.

Only five participants stated they were aware of roles within
their projects that deal with security. P08 summarized the
security team’s obligations as follows: “You can communicate
privately with the security team. They would classify your
issues and decide if it matches the criteria for the issued secu-
rity notice, how to proceed with patches, and how to publish
them.” (P08). Three of the five participants mentioned roles
that are not primarily or only indirectly involved with security,
such as IT departments or sysadmins: “We obviously have a
IT department that would follow up on [security incidents].”
(P19). Relying on a security response team existing within
the parent organization or foundation of the project was more
uncommon, which two participants reported: “There is a whole
security team at [organization]. They are pre-vetting those
issues, and filtering them, and contacting the PMC members
of the projects involved, whenever they see there is a need to
follow up on certain security issues.” (P11).

Summary: Roles and Responsibilities. Our participants’
projects have a variety of contributor hierarchies which
are mostly relatively flat with two levels. This practical
approach seems to be prevalent in projects of any size, bar
very small (single person) projects or ones that grew out
of a corporate context. Most of the projects do not staff
teams dedicated to project security, with some either relying
on their organization’s resources or leveraging members of
other teams such as their IT administrators.

G. Trust Processes

In this section, we explore the general trust model of
projects, as well as their handling of and strategies for trust
challenges. We were also interested in how recently onboarded
contributors can become trusted members and if identity
checks or the the signing of a CLA is required.
Trust Models: Establishing trust for new committers is an
important step in the OSS onboarding process. The majority
of our participants described some form of meritocracy when
asked how new contributors gain trust within the community,
i. e., by making frequent, high-quality contributions to the
project:

“So it’s purely on contributions to the project, so it’s
meritocracy based. And this means that the person
essentially starts usually either just helping out on
filing issues like well documented issues, filing pull
requests and again well documented, reviewing pull
requests is also an important aspect of it.” — P22.

A less common approach involves trusting unknown contrib-
utors by default and giving them access early in the hope of
facilitating first-time contributions: “I really want to empower
people to contribute. [. . .] it’s very easy to get access to [the
project]. It’s not like super easy, but you just submit patches
and if you do some useful work, I default to just give you the
commit access.” (P16).

CLAs appear to be still somewhat rare, with only four
participants mentioning that their projects require one, e. g.,

“For licensing purposes, we require a [CLA], because
the project is licensed under the BSD license. We
have to have people assign their copyright, so when
people want to contribute, they fill out a form, just
sign it. It says, ‘Hey, I’m releasing my contributions
under the Berkeley Style License’.” — P09.

This low number agrees with the personal impressions of
some of our participants, e. g., “[. . .] I think that was the only
time I ever had to [sign a CLA], and I’ve submitted lots of
pull requests to many different projects. It doesn’t seem to be
very widely used.” (P24). In our interviews, projects affiliated
with corporate stakeholders or other organizations appear to
be more likely to require a CLA.
Trust Incidents: The term “trust incident” can cover a wide
field of potential incidents, including social conflicts due to
open source project often being community-focused. Still, the
majority of participants, 20, reported to never have experienced
a trust incident (by their definition) in their projects. Described
trust incidents included drive-by cryptocurrency miner com-
mits, failed background checks, and a pro-active block after
potential SSH key theft. Somewhat unsurprisingly, larger and
likely older projects appear to have had more experience with
trust incidents in the past.

The fact that most projects have never experienced a trust
incident is also reflected in their incident handling strategy,
with multiple participants reporting not having previously
thought about such cases, e. g., “[. . .] since it has never
happened, it is not something I have thought about.” (P26).
Reported incident response strategies, especially by smaller
projects, seem to be decided on a case-by-case basis, e. g.,
“[Incident response] is decided dynamically from case to case.
The infrastructures are so small that you can do this relatively
quickly. So it’s not like in the company that we have incident
playbooks. There are too few people involved for that.” (P01).
Again, larger and likely older projects appear to have a more
codified incident handling strategy in place. Two participants
pointed to their project’s or organization’s code of conduct,
which codifies the steps to take in the case of a breach of
trust:

“That is one place where then the code of conduct
will start to kick in. We actually have an enforcement
section for code of conduct with a step-by-step esca-
lation, which basically ends up with everything from
just asking someone not to do something through to
banning them and removing access.” — P27

Summary: Trust Processes. Most of our participants use
some form of meritocracy for establishing trust with new
contributors, with some even assuming trustworthiness by
default to facilitate first-time contributions. The majority
of participants never experienced a trust incident in their
projects and also did not establish specific trust incident
strategies. Larger, likely older projects seem to have more



past experience with incidents, and often offer more specific
strategies.

H. Opinions and Improvements

Lastly, we asked participants about both the internal and
external reputation of their project in the context of security,
as well as how they would personally like to improve security
and trust in their projects.

With one exception, all participants reported a high internal
reputation of their projects, e. g., “Amongst the people on
the project, everybody trusts it a lot.” (P09) and “We follow
very, very high standards there, mainly because we have a
few people who are very, very keen on that.” (P11). The
same generally holds true for the external reputation, although
many participants are unsure about the actual awareness of the
project outside of their community. Overall, our participants
appear to take pride in their projects, but are quite humble
about their importance and reach in the OSS ecosystem.

We also asked our participants how they would like to
improve security and trust in their projects, assuming no
limitations. For reporting, we roughly sorted the suggested
improvements into mainly requiring more person-hours (15),
requiring more money (9), or requiring a different infrastruc-
ture (9). Improvements requiring more person-hours focus on
alleviating past software development decisions and technical
debt, e. g., “If I could, I would write the entire stack myself.”
(P14) and “[. . .] I would rewrite a lot of the code. That’s
just a historical thing, because it has already become big and
complex [. . .] It’s just like building a house; you’d have to
build it three times before it becomes good.” (P20). Another
focus was enhancing the review process, e. g., “So the first
thing I do is that a group of people would review every pull
request exclusively from the view of security.” (P25).

Some of the improvements mainly requiring more money
also translated into necessitating more person-hours, just by
buying the time, e. g., “I could always use more participants
in the review process and so if I could hire some people, if I
had the disposable income to do that, I would probably hire
people to get more eyes on pull requests than just myself [. . .]”
(P24) and “I think getting more tools and more CI-type tools
to watch for that, because I think humans are vulnerable [. . .]
If I had unlimited budget and unlimited engineers, I’d really
work on improving our testing systems.” (P23). Other money-
based improvements included the introduction of security
bounties: “[Projects] mentioned they tried all the different
kinds of things, and the only thing that worked well was [a]
bounty process, and having bounties, and being able to reward
security researchers to bring up the security issues.” (P11).

For improvements requiring infrastructure, participants
mentioned improvements to build and test pipelines, e. g.,
“with unlimited resources, I would like some more investment
into automatic tools that are better in like finding vulnera-
bilities and problems with code.” (P07) and “I would like
to build [the binaries] on my own machine and then ship
the site final result. For anything binary related, that would
be way better than what we have right now.” (P18). Other

participants mentioned transitioning their projects’ codebases
to other languages, e. g. Rust: “What I’d like to do is oxidize
[the project] over time, to integrate Rust and Rust code into
the codebase – which is quite an undertaking [. . .] and an
incredibly tedious task to do it well.” (P03). Overall, even
improvements initially requiring more money or a different
infrastructure were traceable to the crux of all open source
project: the need for more contributors.

Summary: Problems and Improvements. Our participants
take pride in their projects but are quite humble about their
importance and reach in the OSS ecosystem. Overall, even
improvements initially requiring more money or a different
infrastructure ended up targeting the project’s need for more
contributors.

V. DISCUSSION

In this work, we investigated the security measures and
trust processes of a diverse set of open source project. We
conducted 27 in-depth, semi-structured interviews with open
source contributors, maintainers, and owners to explore the
following research questions:

RQ1: “How are open source projects structured behind-
the-scenes?” Our participants described their contributor hi-
erarchy as being mostly based on two levels: a core group
of maintainers tasked with reviewing code submissions and
with permissions to merge new code into the source tree and
other contributors that are subjected to a code review process.
Most of the projects do not staff dedicated security teams,
with some relying on other teams for security, such as their
IT administrators or their organization’s resources. Release
processes appear to be oriented towards practicality, including
decisions based on direct community input and feedback and
utilizing package registries and other distribution infrastruc-
tures depending on the needs of their users. Our participants
appear to fully utilize modern build systems, including during
testing and deployment, with criteria for dependencies ranging
from readily available metrics to elaborate reviews.

RQ2: “If and what guidance and policies are provided by
open source projects?” Our participants appear to diverge in
their opinions regarding the helpfulness of (written) guidance,
with some preferring more hands-on approaches to knowledge
transfer. For security policies, rather large projects described
dedicated security teams, while smaller projects just offered a
security contact point. Most projects mentioned some type of
disclosure policy or contact for security issues.

RQ3: “How do open source projects approach security and
trust challenges?” Most of our participants reported having
experienced neither a security nor trust incident in the past, al-
though many of our participants were familiar with suspicious
or low quality commits as well as potential vulnerabilities
introduced by dependencies. Most of our participants use
some form of meritocracy for establishing trust with new
contributors, with some even assuming trustworthiness by
default to facilitate first-time contributions. Participants with



larger, older projects more frequently reported incidents and
approaches for incident handling.

Below, we discuss some of our additional findings in greater
detail. Open source projects are part of a larger connected
ecosystem of components, libraries, and software registries. A
single compromised dependency can introduce vulnerabilities
into thousands of projects further down the chain, a fact that
our participants were keenly aware of:

“What we don’t have is the money to fix all the depen-
dencies, like all the ones that depend on the project
because every backward incompatible change that
we will do in the project to address the security
concern would have repercussions in the ecosystem
that goes beyond our own project.” — P22.

In general, project development as described by our partic-
ipants appears to be highly community-driven and practical:
important decisions such as release windows, announcements,
and distribution infrastructure are all based on the input,
feedback, and needs of contributors and users. Most projects
appear to handle security and trust incidents “as they happen”.
This seems to be a pragmatic strategy, as it seems unlikely that
a project could cover all possible incident types beforehand,
especially with the limited personpower of smaller communi-
ties.

As mentioned by our participants, the combination of deep
dependency chains and automatic testing can lead to many
false positive security warnings. These false positives can lead
to a habituation effect, as summarized by a participant:

“So one false positive is worse than missing a real
vulnerability, in my opinion, because if you miss a
real vulnerability, everyone’s like, oh, we better care
more about security. If there’s a false positive, then
everyone says, oh, security warnings are bullshit. It
is much harder to unwind the security-warnings-are-
bullshit attitude than it is to make people care about
security.” — P06

Fittingly, we can let one of our participant’s words help
with summarizing our general findings: “Ultimately, I believe
that people are the key. Automation is something that can help
people. But in the end, the people are like the ultimate barrier
between the harm and the intent.” (P10).

VI. CONCLUSION

In 27 in-depth, semi-structured interviews with owners,
maintainers, and contributors from a diverse set of open source
projects, we investigate their security measures and trust
processes. We explore projects’ behind-the-scene processes,
provided guidance & policies, as well as past challenges and
incident handling. We find that our participants’ projects are
highly diverse both in deployed security measures and trust
processes as well as their underlying motivations.

As projects grow in scope and contributors, so grow their
needs for security and trust processes. We argue for supporting
projects in ways that their growth supports. A small three

person project will never live up to security and trust measures
provided by a 1,000+ maintainer project with corporate back-
ing, yet it should not be left out of any support. Interesting
aspects for future consideration include the type and appli-
cability of support for small projects, as well as identifying
measures with the best trade-off in working hours and security
improvement.

Especially smaller projects handle security and trust inci-
dents “as they happen”. Elaborate incident playbooks and com-
mitter structures are likely of little use to these projects due
to frequently changing committers and structures. We surmise
that especially these smaller projects could be better supported
with public, general example playbooks and resources for
incidents that they then can utilize when the need arises.

As researchers, we advocate against treating open source
developers solely as data sources and review process black-
boxes, and instead to consider them as valuable partners in
bringing security and trust to OSS and software ecosystems
as a whole. Overall, we argue for supporting open source
projects in ways that better consider their individual strengths
and limitations, especially in the case of smaller projects with
low contributor numbers and limited access to resources.

ACKNOWLEDGEMENTS

With this, we want to acknowledge our interviewees for
their participation: It was a great experience to interview
you for this study. We appreciate your knowledge, project
information, and most importantly your valuable time that you
have generously given. We hope that with this work and your
contribution, both the research and open source community
are one step closer to more secure and trustworthy software.
Last but not least, we thank the anonymous reviewers for their
valuable feedback.

REFERENCES

[1] GitHub, The State of the Octoverse, https://octoverse.github.com/,
Accessed: 2021-10-15, 2020.

[2] Microsoft, GitHub, https://github.com, Accessed: 2021-09-29, 2008.
[3] GitLab Inc., GitLab, https://gitlab.com, Accessed: 2021-09-29, 2014.
[4] Cybersecurity and I. S. A. (CISA), Malware discovered in popular

npm package, ua-parser-js, https://us- cert.cisa.gov/ncas/current-
activity/2021/10/22/malware-discovered-popular-npm-package-ua-
parser-js, Accessed: 2021-10-24, 2021.

[5] L. Abrams, Popular npm library hijacked to install password-
stealers, miners, https://www.bleepingcomputer.com/news/security/
popular-npm-library-hijacked-to-install-password-stealers-miners/,
Accessed: 2021-10-24, 2021.

[6] M. Hanley, Github’s commitment to npm ecosystem security, https:
//github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-
security/#security- issues- related- to- the- npm- registry, Accessed:
2021-11-17, Nov. 2021.

[7] A. Sharma, Npm fixes private package names leak, serious autho-
rization bug, https : / /www.bleepingcomputer. com/news / security /
npm-fixes-private-package-names-leak-serious-authorization-bug/,
Accessed: 2021-11-16, Nov. 2021.

[8] The Linux Foundation, “Open source software supply chain secu-
rity,” Tech. Rep., Feb. 2020, Accessed: 2021-11-16.

[9] RedHat, The State of Enterprise Open Source 2020: Enterprise open
source use rises, proprietary software declines, https://www.redhat.
com/en/blog/state- enterprise- open- source- 2020- enterprise- open-
source-use-rises-proprietary-software-declines, Accessed: 2021-06-
23, Feb. 2020.

https://octoverse.github.com/
https://github.com
https://gitlab.com
https://us-cert.cisa.gov/ncas/current-activity/2021/10/22/malware-discovered-popular-npm-package-ua-parser-js
https://us-cert.cisa.gov/ncas/current-activity/2021/10/22/malware-discovered-popular-npm-package-ua-parser-js
https://us-cert.cisa.gov/ncas/current-activity/2021/10/22/malware-discovered-popular-npm-package-ua-parser-js
https://www.bleepingcomputer.com/news/security/popular-npm-library-hijacked-to-install-password-stealers-miners/
https://www.bleepingcomputer.com/news/security/popular-npm-library-hijacked-to-install-password-stealers-miners/
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/#security-issues-related-to-the-npm-registry
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/#security-issues-related-to-the-npm-registry
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/#security-issues-related-to-the-npm-registry
https://www.bleepingcomputer.com/news/security/npm-fixes-private-package-names-leak-serious-authorization-bug/
https://www.bleepingcomputer.com/news/security/npm-fixes-private-package-names-leak-serious-authorization-bug/
https://www.redhat.com/en/blog/state-enterprise-open-source-2020-enterprise-open-source-use-rises-proprietary-software-declines
https://www.redhat.com/en/blog/state-enterprise-open-source-2020-enterprise-open-source-use-rises-proprietary-software-declines
https://www.redhat.com/en/blog/state-enterprise-open-source-2020-enterprise-open-source-use-rises-proprietary-software-declines


[10] Linux Foundation’s Technical Advisory Board, Report on University
of Minnesota breach-of-trust incident, https : / / lwn . net / ml / linux -
kernel/202105051005.49BFABCE@keescook/, Accessed: 2021-11-
27, May 2021.

[11] K. Thompson, “Reflections on trusting trust,” Commun. ACM,
vol. 27, no. 8, pp. 761–763, Aug. 1984.

[12] A. Pietri, D. Spinellis, and S. Zacchiroli, “The software heritage
graph dataset: Public software development under one roof,” in Pro-
ceedings of the 16th International Conference on Mining Software
Repositories, ser. MSR ’19, Montreal, Quebec, Canada: IEEE Press,
2019, pp. 138–142.

[13] ——, “The software heritage graph dataset: Large-scale analysis
of public software development history,” in Proceedings of the
17th International Conference on Mining Software Repositories,
ser. MSR ’20, Seoul, Republic of Korea: Association for Computing
Machinery, 2020, pp. 1–5.

[14] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? a
characterization of open source software repositories,” in 2008 16th
IEEE International Conference on Program Comprehension, 2008,
pp. 182–191.

[15] G. Robles, L. Arjona Reina, A. Serebrenik, B. Vasilescu, and
J. M. González-Barahona, “Floss 2013: A survey dataset about
free software contributors: Challenges for curating, sharing, and
combining,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, ser. MSR 2014, New York, NY, USA:
Association for Computing Machinery, 2014, pp. 396–399.

[16] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “Vulinoss: A dataset
of security vulnerabilities in open-source systems,” in Proceedings of
the 15th International Conference on Mining Software Repositories,
ser. MSR ’18, Gothenburg, Sweden: Association for Computing
Machinery, 2018, pp. 18–21.

[17] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in Proceedings of the
34th International Conference on Software Engineering, ser. ICSE
’12, Zurich, Switzerland: IEEE Press, 2012, pp. 771–781.

[18] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a
firehose,” in Proceedings of the 9th IEEE Working Conference on
Mining Software Repositories, ser. MSR ’12, Zurich, Switzerland:
IEEE Press, 2012, pp. 12–21.

[19] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean
ghtorrent: Github data on demand,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR
2014, Hyderabad, India: Association for Computing Machinery,
2014, pp. 384–387.

[20] Q. Tu et al., “Evolution in open source software: A case study,”
in Proceedings 2000 International Conference on Software Mainte-
nance, IEEE, 2000, pp. 131–142.

[21] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies
of open source software development: Apache and mozilla,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 3, pp. 309–346, 2002.

[22] T. T. Dinh-Trong and J. M. Bieman, “The freebsd project: A repli-
cation case study of open source development,” IEEE Transactions
on Software Engineering, vol. 31, no. 6, pp. 481–494, 2005.

[23] N. Edwards and L. Chen, “An historical examination of open source
releases and their vulnerabilities,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS
’12, Raleigh, North Carolina, USA: Association for Computing
Machinery, 2012, pp. 183–194.

[24] A. D. Householder, J. Chrabaszcz, T. Novelly, D. Warren, and
J. M. Spring, “Historical analysis of exploit availability timelines,”
in 13th USENIX Workshop on Cyber Security Experimentation and
Test (CSET 20), 2020.

[25] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “When are
oss developers more likely to introduce vulnerable code changes?
a case study,” in Open Source Software: Mobile Open Source
Technologies, L. Corral, A. Sillitti, G. Succi, J. Vlasenko, and A. I.
Wasserman, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 234–236.

[26] P. Anbalagan and M. Vouk, “Towards a unifying approach in
understanding security problems,” in 20th International Symposium
on Software Reliability Engineering, 2009, pp. 136–145.

[27] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug charac-
teristics in open source software,” Empirical software engineering,
vol. 19, no. 6, pp. 1665–1705, 2014.

[28] J. Walden, “The impact of a major security event on an open
source project: The case of openssl,” in Proceedings of the 17th
International Conference on Mining Software Repositories, 2020,
pp. 409–419.

[29] K. Altinkemer, J. Rees, and S. Sridhar, “Vulnerabilities and patches
of open source software: An empirical study,” Journal of Informa-
tion System Security, vol. 4, no. 2, pp. 3–25, 2008.

[30] M. Alenezi and Y. Javed, “Open source web application security:
A static analysis approach,” in 2016 International Conference on
Engineering & MIS (ICEMIS), 2016, pp. 1–5.

[31] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta,
“How open source projects use static code analysis tools in contin-
uous integration pipelines,” in Proceedings of the 14th International
Conference on Mining Software Repositories, ser. MSR ’17, Buenos
Aires, Argentina: IEEE Press, 2017, pp. 334–344.

[32] M. Zahedi, M. Ali Babar, and C. Treude, “An empirical study
of security issues posted in open source projects,” in Proceedings
of the 51st Hawaii International Conference on System Sciences
(HICSS18), 2018, pp. 5504–5513.

[33] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast and precise
symbolic analysis of concurrency bugs in device drivers,” in 2015
30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, 2015, pp. 166–177.

[34] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu, “Effective static
analysis of concurrency use-after-free bugs in linux device drivers,”
in 2019 USENIX Annual Technical Conference (USENIX ATC 19),
2019, pp. 255–268.

[35] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5,
May 2005.

[36] F. Li and V. Paxson, “A large-scale empirical study of security
patches,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 2201–2215.

[37] R. Ramsauer, L. Bulwahn, D. Lohmann, and W. Mauerer, “The
sound of silence: Mining security vulnerabilities from secret integra-
tion channels in open-source projects,” in Proceedings of the 2020
ACM SIGSAC Conference on Cloud Computing Security Workshop,
ser. CCSW’20, Virtual Event, USA: Association for Computing
Machinery, 2020.

[38] V. Piantadosi, S. Scalabrino, and R. Oliveto, “Fixing of security
vulnerabilities in open source projects: A case study of apache http
server and apache tomcat,” in 2019 12th IEEE Conference on Soft-
ware Testing, Validation and Verification (ICST), 2019, pp. 68–78.

[39] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: Transparency and collaboration in an open software repos-
itory,” in Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work, ser. CSCW ’12, Seattle, Washington,
USA: Association for Computing Machinery, 2012, pp. 1277–1286.

[40] B. Vasilescu, K. Blincoe, Q. Xuan, et al., “The sky is not the
limit: Multitasking across github projects,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE
’16, Austin, Texas: Association for Computing Machinery, 2016,
pp. 994–1005.

[41] K. Constantino, M. Souza, S. Zhou, E. Figueiredo, and C. Kästner,
“Perceptions of open-source software developers on collaborations:
An interview and survey study,” Journal of Software: Evolution and
Process, e2393, 2021.

[42] L. Moldon, M. Strohmaier, and J. Wachs, “How gamification affects
software developers: Cautionary evidence from a natural experiment
on github,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 2021, pp. 549–561.

[43] C. Overney, J. Meinicke, C. Kästner, and B. Vasilescu, “How to
not get rich: An empirical study of donations in open source,” in
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 1209–1221.

[44] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE
2014, Hyderabad, India: Association for Computing Machinery,
2014, pp. 345–355.

https://lwn.net/ml/linux-kernel/202105051005.49BFABCE@keescook/
https://lwn.net/ml/linux-kernel/202105051005.49BFABCE@keescook/


[45] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and
technical factors for evaluating contribution in github,” in Proceed-
ings of the 36th International Conference on Software Engineering,
ser. ICSE 2014, Hyderabad, India: Association for Computing
Machinery, 2014, pp. 356–366.

[46] D. Ford, M. Behroozi, A. Serebrenik, and C. Parnin, “Beyond
the code itself: How programmers really look at pull requests,”
in Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Society, ser. ICSE-SEIS ’19,
Montreal, Quebec, Canada: IEEE Press, 2019, pp. 51–60.

[47] W. Li, N. Meng, L. Li, and H. Cai, “Understanding language
selection in multi-language software projects on github,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 2021, pp. 256–257.

[48] H. Hata, R. G. Kula, T. Ishio, and C. Treude, “Research artifact:
The potential of meta-maintenance on github,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering: Compan-
ion Proceedings (ICSE-Companion), 2021, pp. 192–193.

[49] J. Coelho and M. T. Valente, “Why modern open source projects
fail,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017, Paderborn, Germany:
Association for Computing Machinery, 2017.

[50] C. Miller, S. Cohen, B. Vasilescu, and C. Kästner, ““Did You
Miss My Comment or What?” understanding toxicity in open
source discussions,” in In 44th International Conference on Software
Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA:
ACM, May 2022.

[51] D. Sondhi, A. Gupta, S. Purandare, A. Rana, D. Kaushal, and
R. Purandare, “Dataset to study indirectly dependent documentation
in github repositories,” in 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2021, pp. 215–216.

[52] R. Li, P. Pandurangan, H. Frluckaj, and L. Dabbish, “Code of
conduct conversations in open source software projects on github,”
Proc. ACM Hum.-Comput. Interact., vol. 5, no. CSCW1, Apr. 2021.

[53] D. Botta, R. Werlinger, A. Gagné, et al., “Towards understanding
it security professionals and their tools,” in Proceedings of the 3rd
Symposium on Usable Privacy and Security, ser. SOUPS ’07, Pitts-
burgh, Pennsylvania, USA: Association for Computing Machinery,
2007, pp. 100–111.

[54] M. Silic and A. Back, “Information security and open source dual
use security software: Trust paradox,” in Open Source Software:
Quality Verification, E. Petrinja, G. Succi, N. El Ioini, and A. Sillitti,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 194–
206.

[55] L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea,
“Real life challenges in access-control management,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
2009, pp. 899–908.

[56] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama,
and M. Prabaker, “Field studies of computer system administrators:
Analysis of system management tools and practices,” in Proceedings
of the 2004 ACM conference on Computer supported cooperative
work, 2004, pp. 388–395.

[57] R. A. Bridges, M. D. Iannacone, J. R. Goodall, and J. M. Beaver,
“How do information security workers use host data? a summary of
interviews with security analysts,” arXiv preprint arXiv:1812.02867,
2018.

[58] S. E. McGregor, P. Charters, T. Holliday, and F. Roesner, “Inves-
tigating the computer security practices and needs of journalists,”
in 24th USENIX Security Symposium (USENIX Security 15), 2015,
pp. 399–414.

[59] S. E. McGregor, E. A. Watkins, M. N. Al-Ameen, K. Caine, and F.
Roesner, “When the weakest link is strong: Secure collaboration in
the case of the panama papers,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 505–522.

[60] C. Chen, N. Dell, and F. Roesner, “Computer security and privacy
in the interactions between victim service providers and human traf-
ficking survivors,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 89–104.

[61] W. Bai, M. Namara, Y. Qian, P. G. Kelley, M. L. Mazurek, and
D. Kim, “An inconvenient trust: User attitudes toward security and
usability tradeoffs for key-directory encryption systems,” in Twelfth

Symposium on Usable Privacy and Security (SOUPS 2016), 2016,
pp. 113–130.

[62] K. Gallagher, S. Patil, and N. Memon, “New me: Understanding
expert and non-expert perceptions and usage of the tor anonymity
network,” in Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017), 2017, pp. 385–398.

[63] M. Gutfleisch, J. H. Klemmer, N. Busch, Y. Acar, M. A. Sasse,
and S. Fahl, “How does usable security (not) end up in software
products? results from a qualitative interview study,” in 43rd IEEE
Symposium on Security and Privacy, IEEE S&P 2022, May 22-26,
2022, IEEE Computer Society, May 2022.

[64] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in
open source software projects,” in Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social
Computing, ser. CSCW ’15, Vancouver, BC, Canada: Association
for Computing Machinery, 2015, pp. 1379–1392.

[65] S. Balali, U. Annamalai, H. S. Padala, et al., “Recommending
tasks to newcomers in oss projects: How do mentors handle it?” In
Proceedings of the 16th International Symposium on Open Collab-
oration, ser. OpenSym 2020, Virtual conference, Spain: Association
for Computing Machinery, 2020.

[66] W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani,
Understanding free/open source software development processes,
2006.

[67] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/libre open-
source software development: What we know and what we do not
know,” ACM Comput. Surv., vol. 44, no. 2, Mar. 2008.

[68] S.-F. Wen, “Software security in open source development: A
systematic literature review,” in 2017 21st Conference of Open
Innovations Association (FRUCT), 2017, pp. 364–373.

[69] L. P. Hattori and M. Lanza, “On the nature of commits,” in 2008
23rd IEEE/ACM International Conference on Automated Software
Engineering - Workshops, 2008, pp. 63–71.

[70] J. C. S. Santos, A. Peruma, M. Mirakhorli, M. Galstery, J. V. Vidal,
and A. Sejfia, “Understanding software vulnerabilities related to ar-
chitectural security tactics: An empirical investigation of chromium,
php and thunderbird,” in 2017 IEEE International Conference on
Software Architecture (ICSA), 2017, pp. 69–78.

[71] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emo-
tion: Sentiment analysis of security discussions on github,” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014, New York, NY, USA: Association for
Computing Machinery, 2014, pp. 348–351.

[72] G. Antal, M. Keleti, and P. Hegedŭns, “Exploring the security
awareness of the python and javascript open source communities,”
in Proceedings of the 17th International Conference on Mining Soft-
ware Repositories, ser. MSR ’20, New York, NY, USA: Association
for Computing Machinery, 2020, pp. 16–20.

[73] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying
the characteristics of vulnerable code changes: An empirical study,”
in Proceedings of the 22nd ACM SIGSOFT international symposium
on foundations of software engineering, 2014, pp. 257–268.

[74] H. Perl, S. Dechand, M. Smith, et al., “Vccfinder: Finding potential
vulnerabilities in open-source projects to assist code audits,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, October 12-16,
2015, ACM, 2015, pp. 426–437.

[75] I. Abunadi and M. Alenezi, “Towards cross project vulnerability
prediction in open source web applications,” in Proceedings of
the The International Conference on Engineering & MIS 2015,
ser. ICEMIS ’15, Istanbul, Turkey: Association for Computing
Machinery, 2015.

[76] Y. Zhou and A. Sharma, “Automated identification of security issues
from commit messages and bug reports,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017, New York, NY, USA: Association for Com-
puting Machinery, 2017, pp. 914–919.

[77] N. Raman, M. Cao, Y. Tsvetkov, C. Kästner, and B. Vasilescu,
“Stress and burnout in open source: Toward finding, understand-
ing, and mitigating unhealthy interactions,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineer-
ing: New Ideas and Emerging Results, ser. ICSE-NIER ’20, Seoul,



South Korea: Association for Computing Machinery, 2020, pp. 57–
60.

[78] S. Bugiel, L. V. Davi, and S. Schulz, “Scalable trust establishment
with software reputation,” in Proceedings of the sixth ACM work-
shop on Scalable trusted computing, 2011, pp. 15–24.

[79] M. Syeed, J. Lindman, and I. Hammouda, “Measuring perceived
trust in open source software communities,” in Open Source Sys-
tems: Towards Robust Practices, F. Balaguer, R. Di Cosmo, A.
Garrido, F. Kon, G. Robles, and S. Zacchiroli, Eds., Cham: Springer
International Publishing, 2017.

[80] M. Antikainen, T. Aaltonen, and J. Väisänen, “The role of trust in
oss communities — case linux kernel community,” in Open Source
Development, Adoption and Innovation, J. Feller, B. Fitzgerald,
W. Scacchi, and A. Sillitti, Eds., Boston, MA: Springer US, 2007,
pp. 223–228.

[81] V. S. Sinha, S. Mani, and S. Sinha, “Entering the circle of trust:
Developer initiation as committers in open-source projects,” in
Proceedings of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11, Waikiki, Honolulu, HI, USA: Associa-
tion for Computing Machinery, 2011, pp. 133–142.

[82] A. Bosu and J. C. Carver, “Impact of developer reputation on
code review outcomes in oss projects: An empirical investigation,”
in Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’14,
Torino, Italy: Association for Computing Machinery, 2014.

[83] C. Thompson and D. Wagner, “A large-scale study of modern code
review and security in open source projects,” in Proceedings of
the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering, Toronto, Canada: Association for
Computing Machinery, 2017.

[84] A.-K. Groven, K. Haaland, R. Glott, and A. Tannenberg, “Security
measurements within the framework of quality assessment models
for free/libre open source software,” in Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume,
ser. ECSA ’10, Copenhagen, Denmark: Association for Computing
Machinery, 2010, pp. 229–235.

[85] J. Ryoo, B. Malone, P. A. Laplante, and P. Anand, “The use of
security tactics in open source software projects,” IEEE Transactions
on Reliability, vol. 65, no. 3, pp. 1195–1204, 2016.

[86] V. N. Subramanian, I. Rehman, M. Nagappan, and R. G. Kula,
“Analyzing first contributions on github: What do newcomers do,”
IEEE Software, 2020.

[87] A. Hars and S. Ou, “Working for free? motivations for participating
in open-source projects,” Int. J. Electron. Commerce, vol. 6, no. 3,
pp. 25–39, Apr. 2002.

[88] C. Hannebauer and V. Gruhn, “Motivation of newcomers to floss
projects,” in Proceedings of the 12th International Symposium on
Open Collaboration, ser. OpenSym ’16, Berlin, Germany: Associa-
tion for Computing Machinery, 2016.

[89] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More common than
you think: An in-depth study of casual contributors,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, 2016, pp. 112–123.

[90] C. Miller, D. G. Widder, C. Kästner, and B. Vasilescu, “Why
do people give up flossing? a study of contributor disengagement
in open source,” in Open Source Systems, Springer International
Publishing, 2019, pp. 116–129.

[91] S.-F. Wen, “Learning secure programming in open source software
communities: A socio-technical view,” in Proceedings of the 6th
International Conference on Information and Education Technology,
ser. ICIET ’18, Osaka, Japan: Association for Computing Machin-
ery, 2018.

[92] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa,
“Overcoming open source project entry barriers with a portal for
newcomers,” in Proceedings of the 38th International Conference
on Software Engineering, ser. ICSE ’16, Austin, Texas: Association
for Computing Machinery, 2016, pp. 273–284.

[93] I. Steinmacher, C. Treude, and M. A. Gerosa, “Let me in: Guide-
lines for the successful onboarding of newcomers to open source
projects,” IEEE Software, vol. 36, no. 4, pp. 41–49, 2019.

[94] J. Dominic, J. Houser, I. Steinmacher, C. Ritter, and P. Rodeghero,
“Conversational bot for newcomers onboarding to open source
projects,” in Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, ser. ICSEW’20,

Seoul, Republic of Korea: Association for Computing Machinery,
2020, pp. 46–50.

[95] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is
going to mentor newcomers in open source projects?” In Proceed-
ings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12, Cary, North
Carolina: Association for Computing Machinery, 2012.

[96] K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in github and
a method for ecosystem identification using reference coupling,” in
Proceedings of the 12th Working Conference on Mining Software
Repositories, ser. MSR ’15, Florence, Italy: IEEE Press, 2015,
pp. 202–207.

[97] C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov, “Developer
onboarding in github: The role of prior social links and language
experience,” in Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, ser. ESEC/FSE 2015, Bergamo,
Italy: Association for Computing Machinery, 2015, pp. 817–828.

[98] J. Salter, Linux kernel team rejects university of minnesota re-
searchers’ apology, https://arstechnica.com/gadgets/2021/04/linux-
kernel- team-rejects-university-of-minnesota-researchers-apology/,
Accessed: 2021-11-27, Apr. 2021.

[99] T. Holz and A. Oprea, IEEE S&P’21 program committee statement
regarding the “hypocrite commits” paper, https : / / www . ieee -
security . org / TC / SP2021 / downloads / 2021 _ PC _ Statement . pdf,
Accessed: 2021-11-27, May 2021.

[100] K. Charmaz, Constructing Grounded Theory. Sage, 2014.
[101] A. Strauss and J. M. Corbin, Grounded theory in practice. Sage,

1997, p. 288.
[102] J. Corbin and A. Strauss, “Grounded theory research: Procedures,

canons and evaluative criteria,” Qualitative Sociology, vol. 19, no. 6,
pp. 418–427, 1990.

[103] C. Urquhart, Grounded theory for qualitative research: A practical
guide. Sage, 2012.

[104] M. Birks and J. Mills, Grounded theory: A practical guide. Sage,
2015.

[105] E. Kenneally and D. Dittrich, “The Menlo report: Ethical principles
guiding information and communication technology research,” SSRN
Electronic Journal, Aug. 2012.

[106] Guidelines for research on the kernel community, https://lwn.net/
Articles/888891/, Accessed: 2022-03-31, Mar. 2022.

APPENDIX A
RECRUITMENT CRITERIA

Our general recruitment approach in the repository channel
was a stratified sampling in quartiles of GitHub repositories
ranked by both a “popularity” and an “activity” score. We
based this score on repository-level metrics provided by the
GitHub API such as the number of commits and committers
as well as the number of stars and forks.

Our initial repository dataset was downloaded in July 2021
from GH Archive (https://www.gharchive.org/), a service
providing historical GitHub repository data, publicly avail-
able for further analysis. We limited our dataset to code
repositories that received at least 40 commits from at least
20 distinct committers in the previous six months, which
sets a minimum threshold for any given selected project’s
activity. This was done with the intent of excluding inactive
and personal projects, in which our inquiry would either not
reach active contributors or where interpersonal trust processes
are irrelevant.

The resulting 15,256 repositories were enriched with up-to-
date data from GitHub’s API, such as programming language
usage, topic tags, as well as star and fork counts. Users usually
give out stars as a means of bookmarking a project or to
explicitly value a project’s merit. A project is “forked” into
a user’s namespace for them to be able to make changes

https://arstechnica.com/gadgets/2021/04/linux-kernel-team-rejects-university-of-minnesota-researchers-apology/
https://arstechnica.com/gadgets/2021/04/linux-kernel-team-rejects-university-of-minnesota-researchers-apology/
https://www.ieee-security.org/TC/SP2021/downloads/2021_PC_Statement.pdf
https://www.ieee-security.org/TC/SP2021/downloads/2021_PC_Statement.pdf
https://lwn.net/Articles/888891/
https://lwn.net/Articles/888891/
https://www.gharchive.org/


to its code base and consequently create a pull request for
their changes to be accepted into the main source tree. The
combination of the number of a project’s stars and forks can
thus serve as a proxy for its popularity. To ensure that the
selected projects recently went through the onboarding of new
contributors, we only proceeded with those that gained new
committers in July 2021, and which had not contributed to the
project before. After excluding duplicate repositories as well
as repositories exclusively containing markup languages, we
arrived at a set of 4,456 projects for final consideration.

We joined the popularity and activity indicators to a com-
bined ranking and divided the set of projects into quartiles.
This ensured high diversity across the indicators, while mini-
mizing the amount of strata. We then iteratively selected and
contacted projects from each stratum (e. g., first project from
1st quartile, first project from 2nd quartile, and so on) until we
reached interview saturation.


	Introduction
	Replication Package

	Related Work
	Methodology
	Study Setup
	Interview Structure
	Coding and Analysis
	Ethical Considerations and Data Protection
	Limitations

	Results
	Project Demographics
	Security Challenges
	Guidance and Policies
	Project Structure
	Releases and Updates
	Roles and Responsibilities
	Trust Processes
	Opinions and Improvements

	Discussion
	Conclusion
	Appendix A: Recruitment Criteria

