usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Security Developer Studies with GitHub Users:
Exploring a Convenience Sample

Yasemin Acar, Leibniz University Hannover; Christian Stransky, CISPA, Saarland University;
Dominik Wermbke, Leibniz University Hannover; Michelle Mazurek, University of Maryland,
College Park; Sascha Fahl, Leibniz University Hannover

https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar

This paper is included in the Proceedings of the

Thirteenth Symposium on Usable Privacy and Security (SOUPS 2017).
July 12-14, 2017 - Santa Clara, CA, USA
ISBN 978-1-931971-39-3

Open access to the Proceedings of the
Thirteenth Symposium

on Usable Privacy and Security
is sponsored by USENIX.

Security Developer Studies with GitHub Users:
Exploring a Convenience Sample

Yasemin Acar,*t Christian Stransky," Dominik Wermke,** Michelle L. Mazurek,* and Sascha Fahl*t
*Leibniz University Hannover; TCISPA, Saarland University; *University of Maryland
{acar,wermke,fahl}@sec.uni-hannover.de; stransky@cs.uni-saarland.de; mmazurek@umd.edu

ABSTRACT

The usable security community is increasingly considering
how to improve security decision-making not only for end
users, but also for information technology professionals, in-
cluding system administrators and software developers. Re-
cruiting these professionals for user studies can prove chal-
lenging, as, relative to end users more generally, they are
limited in numbers, geographically concentrated, and accus-
tomed to higher compensation. One potential approach is
to recruit active GitHub users, who are (in some ways) con-
veniently available for online studies. However, it is not
well understood how GitHub users perform when working
on security-related tasks. As a first step in addressing this
question, we conducted an experiment in which we recruited
307 active GitHub users to each complete the same security-
relevant programming tasks. We compared the results in
terms of functional correctness as well as security, finding
differences in performance for both security and function-
ality related to the participant’s self-reported years of ex-
perience, but no statistically significant differences related
to the participant’s self-reported status as a student, status
as a professional developer, or security background. These
results provide initial evidence for how to think about valid-
ity when recruiting convenience samples as substitutes for
professional developers in security developer studies.

1. INTRODUCTION

The usable security community is increasingly considering
how to improve security decision-making not only for end
users, but for information technology professionals, includ-
ing system administrators and software developers [1,2,9,
10, 39]. By focusing on the needs and practices of these
communities, we can develop guidelines and tools and even
redesign ecosystems to promote secure outcomes in practice,
even when administrators or developers are not security ex-
perts and must balance competing priorities.

One common approach in usable security and privacy re-
search is to conduct an experiment, which can allow re-
searchers to investigate causal relationships (e.g.,

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

Symposium on Usable Privacy and Security (SOUPS) 2017, July 12-14,
2017, Santa Clara, California.

[5,8,13,36]). Other non-field-study mechanisms, such as sur-
veys and interview studies, are also common. For research
concerned with the general population of end users, recruit-
ment for these studies can be fairly straightforward, via on-
line recruitment platforms such as Amazon Mechanical Turk
or via local methods such as posting flyers and advertising
on email lists or classified-ad services like Craigslist. These
approaches generally yield acceptable sample sizes at an af-
fordable cost.

Recruiting processes for security developer studies, however,
are less well established. For in-lab studies, professional de-
velopers may be hard to contact (relative to the general
public), may not be locally available outside of tech-hub
regions, may have demanding schedules, or may be unwill-
ing to participate when research compensation is consider-
ably lower than their typical hourly rate. For these rea-
sons, studies involving developers tend to have small sam-
ples and/or to rely heavily on university computer-science
students [2, 3,15, 34, 35,39]. To our knowledge, very few
researchers have attempted large-scale online security de-
veloper studies [1,3].

To date, however, it is not well understood how these dif-
ferent recruitment approaches affect research outcomes in
usable security and privacy studies. The empirical software
engineering community has a long tradition of conducting
experiments with students instead of professional develop-
ers [29] and has found that under certain circumstances, such
as similar level of expertise in the task at hand, students can
be acceptable substitutes [27]. These studies, however, do
not consider a security and privacy context; we argue that
this matters, because security and privacy tasks differ from
general programming tasks in several potentially important
ways. First, because security and privacy are generally sec-
ondary tasks, it can be dangerous to assume they exhibit
similar characteristics as general programming tasks. For
example, relative to many general programming tasks, it can
be especially difficult for a developer to directly test that se-
curity is working. (For example, how does one observe that
a message is correctly encrypted?) Second, a portion of
professional developers are self-taught, so their exposure to
security and privacy education may differ importantly from
university students’ [32].

The question of how to recruit for security studies of de-
velopers in order to maximize validity is complex but im-
portant. In this study, we take a first step toward an-
swering it: We report on a experiment (n=307) comparing
GitHub contributors completing the same security-relevant

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 81

tasks. For this experiment, we take as a case study the ap-
proach (which we used in prior work [1]) of recruiting active
developers from GitHub for an online study. All partici-
pants completed three Python-programming tasks spanning
four security-relevant concepts, which were manually scored
for functionality and security. We found that participants
across all programming experience levels were similarly in-
experienced in security, and that professional developers re-
ported more programming experience than university stu-
dents. Being a professional did not increase a participant’s
likelihood of writing functional or secure code statistically
significantly. Similarly, self-reported security background
had no statistical effect on the results. Python experience
was the only factor that significantly increased the likeli-
hood of writing both functional and secure code. Further
work is needed to understand how participants from GitHub
compare to those recruited more traditionally (e.g., students
recruited using flyers and campus e-mail lists, or developers
recruited using meetup websites or researchers’ corporate
contacts). Nonetheless, our findings provide preliminary ev-
idence that at least in this context, similarly experienced
university students can be a valid option for studying pro-
fessionals developers’ security behaviors.

2. RELATED WORK

We discuss related work in two key areas: user studies
with software developers and IT professionals focusing on
security-relevant topics, and user studies with software de-
velopers and IT professionals that do not focus on security
but do discuss the impact of participants’ level of profession-
alism on the study’s validity.

Studies with Security Focus. In [2] we present a labo-
ratory study on the impact of information sources such as
online blogs, search engines, official API documentation and
StackOverflow on code security. We recruited both com-
puter science students (40) and professional Android devel-
opers (14). We found that software development experience
had no impact on code security, but previous participation in
security classes had a significant impact. That study briefly
compares students to professionals, finding that profession-
als were more likely to produce functional code but no more
likely to produce secure code; however, that work does not
deeply interrogate differences between the populations and
the resulting implications for validity. In [1], we conducted
an online experiment with GitHub users to compare the us-
ability of cryptographic APIs; that work does not distinguish
different groups of GitHub users.

Many studies with a security focus rely primarily on stu-
dents. Yakdan et al. [39] conducted a user study to measure
the quality of decompilers for malware analysis. Partici-
pants included 22 computer-science students who had com-
pleted an online bootcamp as well as 9 professional malware
analysts. Scandariato et al. [28] conduct a controlled ex-
periment with 9 graduate students, all of whom had taken
a security class, to investigate whether static code analy-
sis or penetration testing was more successful for finding
security vulnerabilities in code. Layman et al. [22] con-
ducted a controlled experiment with 18 computer-science
students to explore what factors are used by developers to
decide whether or not to address a fault when notified by
an automated fault detection tool. Jain and Lindqvist [15]
conducted a laboratory study with 25 computer-science stu-

dents (5 graduate; 20 undergraduate) to investigate a new,
more privacy-friendly location API for Android application
developers and found that, when given the choice, develop-
ers prefer the more privacy-preserving API. Barik et al. [4]
conducted an eye-tracking study with undergraduate and
graduate university students to investigate whether devel-
opers read and understand compiler warning messages in
integrated development environments.

Studies that use professional developers are frequently qual-
itative in nature, and as such can effectively make use of rel-
atively small sample sizes. Johnson et al. [17] conducted in-
terviews with 20 real developers to investigate why software
developers do not use static analysis tools to find bugs in
software, while Xie et al. [38] conducted 15 semi-structured
interviews with professional software developers to under-
stand their perceptions and behaviors related to software
security. Thomas et al. [34] conducted a laboratory study
with 28 computer-science students to investigate interac-
tive code annotations for access control vulnerabilities. As
follow up, Thomas et al. [35] conducted an interview and
observation-based study with professional software devel-
opers using snowball sampling. They were able to recruit
13 participants, paying each a $25 gift card, to examine
how well developers understand the researchers’ static code
analysis tool ASIDE. Johnson et al. [16] describe a qualita-
tive study with 26 participants including undergraduate and
graduate students as well as professional developers. Smith
et al. [31] conducted an exploratory study with five stu-
dents and five professional software developers to study the
questions developers encounter when using static analysis
tools.To investigate why developers make cryptography mis-
takes, Nadi et al. [25]surveyed 11 Stack Overflow posters who
had asked relevant questions. A follow-up survey recruited
37 Java developers via snowball sampling, social media, and
email addresses drawn from GitHub commits. This work
does not address demographic differences, nor even whether
participants were professional software developers, students,
or something else.

A few online studies of developers have reached larger sam-
ples, but generally for short surveys rather than experimen-
tal tasks. Balebako et al. [3] studied the privacy and se-
curity behaviors of smartphone application developers; they
conducted 13 interviews with application developers and an
online survey with 228 application developers. They com-
pensated the interviewees with $20 each, and the online sur-
vey participants with a $5 Amazon gift card. Witschey et
al. [37] survey hundreds of developers from multiple com-
panies (snowball sampling) and from mailing lists to learn
their reasons for or against the use of security tools.

Overall, these studies suggest that reaching large numbers of
professional developers can be challenging. As such, under-
standing the sample properties of participants who are more
readily available (students, online samples, convenience sam-
ples) is an aspect of contextualizing the valuable results of
these studies. In this paper, we take a first step in this direc-
tion by examining in detail an online sample from GitHub.

Studies without Security Focus. In the field of Empir-
ical Software Engineering, the question whether or not stu-
dents can be used as substitutes for developers when exper-
imenting is of strong interest. Salman et al. [27] compared
students and developers for several (non-security-related)

82 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

tasks, and found that the code they write can be compared
if they are equally inexperienced in the subject they are
working on. When professionals are more experienced than
students, their code is better across several metrics. Hoest et
al. [14] compare students and developers across assessment
(not coding) tasks and find that under certain conditions,
e.g., that students be in the final stretches of a Master’s
program, students can be used as substitutes for develop-
ers. Carver et al. [7] give instructions on how to design
studies that use students as coding subjects. McMeekin et
al. [23] find that different experience levels between students
and professionals have a strong influence on their abilities to
find flaws in code. Sjoeberg et al. [29] systematically analyze
a decade’s worth of studies performed in Empirical Soft-
ware Engineering, finding that eighty-seven percent of all
subjects were students and nine percent were professionals.
They question the relevance for industry of results obtained
in studies based exclusively on student recruits. Smith et
al. [30] perform post-hoc analysis on previously conducted
surveys with developers to identify several factors software
researchers can use to increase participation rates in devel-
oper studies. Murphy-Hill et al. [24] enumerate dimensions
which software engineering researchers can use to generalize
their findings.

3. METHODS

We designed an online, between-subjects study to compare
how effectively developers could quickly write correct, se-
cure code using Python. We recruited participants, all
with Python experience, who had published source code at
GitHub.

Participants were assigned to complete a set of three short
programming tasks using Python: an encryption task, a task
to store login credentials in an SQLite database, and a task
to write a routine for a URL shortener service. Each par-
ticipant was assigned the tasks in a random order (no task
depended on completing a prior task). We selected these
tasks to provide a range of security-relevant operations while
keeping participants’ workloads manageable.

After finishing the tasks, participants completed an exit sur-
vey about the code they wrote during the study, as well
as their educational background and programming experi-
ence. Two researchers coded participants’ submitted code
for functional correctness and security.

All study procedures were approved by the Ethics Review
Board of Saarland University, the Institutional Review
Board of the University of Maryland and the NIST Human
Subjects Protection Office.

3.1 Language selection

We elected to use Python as the programming language for
our experiment, as it is widely used across many communi-
ties and offers support for all kinds of security-related APIs,
including cryptography. As a bonus, Python is easy to read
and write, is widely used among both beginners and experi-
enced programmers, and is regularly taught in universities.
Python is the third most popular programming language on
GitHub, trailing JavaScript and Java [12]. Therefore, we
reasoned that we would be able to recruit sufficient profes-
sional Python developers and computer science students for
our study.

3.2 Recruitment

As a first step to understanding security-study behavior of
GitHub committers, we recruited broadly from GitHub, the
popular source-code management service. To do this, we ex-
tracted all Python projects from the GitHub Archive data-
base [11] between GitHub’s launch in April 2008 and Decem-
ber 2016, yielding 798,839 projects in total. We randomly
sampled 100,000 of these repositories and cloned them. Us-
ing this random sample, we extracted email addresses of
80,000 randomly chosen Python committers. These com-
mitters served as a source pool for our recruitment.

We emailed these GitHub users in batches, asking them to
participate in a study exploring how developers use Python.
We did not mention security or privacy in the recruitment
message. We mentioned that we would not be able to com-
pensate them, but the email offered a link to learn more
about the study and a link to remove the email address from
any further communication about our research. Each con-
tacted GitHub users was assigned a unique pseudonymous
identifier (ID) to allow us to correlate their study participa-
tion to their GitHub statistics separately from their email
address.

Recipients who clicked the link to participate in the study
were directed to a landing page containing a consent form.
After affirming that they were over 18, consented to the
study, and were comfortable with participating in the study
in English, they were introduced to the study framing. We
did not restrict participation to those with security expertise
because we were interested in the behavior of non-security-
experts encountering security as a portion of their task.

To explore the characteristics of this sample, the exit ques-
tionnaire included questions about whether they were cur-
rently enrolled in an undergraduate or graduate university
program and whether they were working in a job that mainly
involved Python programming. We also asked about years
of experience writing Python code, as well as whether the
participant had a background in computer security.

3.3 Experimental infrastructure
For this study, we used an experimental infrastructure we de-

veloped, which is described in detail in our previous work [1,
33].

We designed the experimental infrastructure with certain
important features in mind:

e A controlled study environment that would be the
same across all participants, including having pre-
installed all needed libraries.

e The ability to capture all code typed by our partici-
pants, capture all program runs and attendant error
messages, measure time spent working on tasks, and
recognize whether or not code was copied and pasted.

e Allowing participants to skip tasks and continue on to
the remaining tasks, while providing information on
why they decided to skip the task.

To achieve these goals, the infrastructure uses Jupyter Note-
books (version 4.2.1) [19], which allow our participants to
write, run, and debug their code in the browser, without hav-
ing to download or upload anything. The code runs on our

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 83

server, using our standardized Python environment (Python
2.7.11). This setup also allows us to frequently snapshot par-
ticipants’ progress and capture copy-paste events. To pre-
vent interference between participants, each participant was
assigned to a separate virtual machine running on Amazon’s
EC2 service. Figure 1 shows an example Notebook.

We pre-installed many popular Python libraries for access-
ing an SQLite database, dealing with string manipulation,
storing user credentials, and cryptography. Table 9 in Ap-
pendix C lists all libraries we provided. We tried to include
as many relevant libraries as possible, so that every partici-
pant could work on the tasks using their favorite libraries.

The tasks were shown one at a time, with a progress in-
dicator showing how many tasks remained. For each task,
participants were given buttons to “Run and test” their code,
and to move on using “Solved, next task” or “Not solved, but
next task.” (A "Get unstuck” button was also provided in
case the participant accidentally sent Python into an infinite
loop or otherwise crashed the Python interpreter running in
the Notebook.) After completing (or skipping) all tasks, the
participant was redirected to the exit survey.

3.4 Exit survey

Once all tasks had been completed or abandoned, the partic-
ipants were directed to a short exit survey (cf. Appendix A).
We asked for their opinions about the tasks they had com-
pleted: Did they think they had solved them? How did
they perceive the tasks’ difficulty? Did they think their
solution was secure? We also were interested in whether
they thought about security or privacy when working on the
tasks. Finally, we wanted to know whether our participants
had worked on similar programming problems in the past.
For these task-specific questions, we used our infrastructure
to display the participant’s code for the corresponding task
for their reference. We also asked several questions about
demographic information and programming experience, to
allow us to distinguish categories of participants.

3.5 Task design

We designed tasks that were short enough so that the un-
compensated participants would be likely to complete them
before losing interest, but still complex enough to be inter-
esting and allow for some mistakes. Most importantly, we
designed the tasks to model real-world security and privacy
problems that Python developers could reasonably be ex-
pected to encounter. While these tasks of course do not
represent all possible security tasks, we think they provide
an interesting variety for analysis.

URL Shortener

We asked our participants to write code for a method that
could be part of a URL shortening service such as bit.ly *
or Google’s URL shortener goo.gl. 2

Lef. https://bitly.com/
2¢f. nttps://goo.gl/

URL Shortener Task

Description:

You are asked to develop code for a URL shortening
service similar to https://goo.gl/. Users of this
service will provide you URLs such as https://en.
wikipedia.org/wiki/History_of_the_Internet.
As a result your service should return a shortened
URL such as http://foo.bar/1xf2. In this task we
would like you to implement a method shortenURL
that is called for every input URL. The output of
this method is a shortened URL for the input URL.

When is the problem solved?
A shortened URL is returned. Please print the
output of the method to the console.

J

While this task does not directly have security implications,
we were mainly interested in whether, e.g., they used well
established approaches such as message digest or random
number generators to generate a short URL, or whether they
invented their own algorithm.

Credential Storage
We asked our participants to store login credentials, namely
a username and password, in a database backend.

Credential Storage Task

Description:

You are asked to develop a web-application backend
that stores login credentials (i.e., usernames and
passwords) for the web application’s users. In this
task, we would like you to implement a method
storeCredentials that is called for every user at
account registration. New login credentials are
appended to a local SQLite database. Assume that
the username and password are given as HTTP
POST parameters to your method. Although we
are not asking you to implement the verifyCreden-
tials method for authenticating users at this time,
assume that you will also be writing that method,
so you can choose the storage format within the
database. We have prepared a SQLite database
named “db.sqlite” containing a table “users” and five
text columns, “columnl”; “column2”, “column3”,
“column4”, “column5”. You can use any or all
of these columns as needed to store users’ login
credentials; you do not have to use all columns to
solve the task.

When is the problem solved?
The credentials are stored in the database file.

J

This task has direct security implications: we were mainly
interested in whether participants followed security best
practices. Best practices to store user credentials in a data-
base include hashing and salting the password instead of
storing it in plaintext and using some sort of input saniti-
zation (e.g. parameterized instead of raw SQL queries) for
SQL queries to prevent SQL injection attacks.

84 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

https://bitly.com/
https://goo.gl/
https://goo.gl/
https://en.wikipedia.org/wiki/History_of_the_Internet
https://en.wikipedia.org/wiki/History_of_the_Internet
http://foo.bar/1xf2

Goal: You are asked to develop a web-application backend that stores login credentials (i.e.. usernames and passwords) for the web application’s users. In
this task we would like you to implement a method storeCredentials which is called for every user at account registration. New login credentials are
appended fo a local SQLite database. Assume that the username and password are given as HTTP POST parameters to your method. Although we are not
asking you to implement the verifyCredentials method for authenticating users at this time, assume that you will also be writing that method, so you can
choose the storage format within the database. We have prepared a SQLite database named "db.sqlite” containing a table "users" and five text columns,
"columni”, "column2”, "column3"”, "column4”, "columnis”. You can use any or all of these columns as needed to store users’ login credentials; you do not

have to use all columns o solve the task.

In [3]: 1 import sqlite3
4 When is the problem solved?

This is where your code goes

8 # Feel free to use any resources.
C conn=sglite3.connect(sqliteDb)

18 c=conn.cursor()

12 conn.commit()
13 conn.close()
14 return True

16 print storePassword(“"foo", "bar" \
Last execution started: 2:0:37

True

2 def storePassword(username, password, sqliteDb="./db.sqlite"):

The credentials are stored in the database file.

11 c.execute("INSERT INTO users WALUES ('"+username+"','"+password+"', Null, Null, Null)")

Run and Test

NOT solved, Next Task Solved, Next Task

Figure 1: An example of the study’s task interface.

String Encryption
We asked participants to write code to encrypt and decrypt
a string.

String Encryption Task

Description:
You are asked to write code that is able to encrypt
and decrypt a string.

When is the problem solved?

The input string is encrypted and decrypted after-
wards. You should see the encrypted and decrypted
string in the console.

\ J

In this task we were mainly interested in whether partici-
pants wrote secure cryptographic code, e.g., choosing secure
algorithms, strong key sizes, and secure modes of operation.

For each task, we provided stub code and some comments
with instructions about how to work on the task. The code
stubs were intended to make the programming task as clear
as possible and to ensure that we would later easily be able
to run automated unit tests to examine functionality. The
code stubs also helped to orient participants to the tasks.

We told participants that “you are welcome to use any re-
sources you normally would” (such as documentation or pro-
gramming websites) to work on the tasks. We asked partic-
ipants to note any such resources as comments to the code,
for our reference, prompting them to do so when we detected
that they had pasted text and/or code into the Notebook.

3.6 Evaluating participant solutions

We used the code submitted by our participants for each
task, henceforth called a solution, as the basis for our anal-
ysis. We evaluated each participant’s solution to each task

for both functional correctness and security. Every task was
independently reviewed by two coders, using a content anal-
ysis approach [21] with a codebook based on our knowledge
of the tasks and best practices. Differences between the two
coders were resolved by discussion. We briefly describe the
codebook below.

Functionality. For each programming task, we assigned a
participant a functionality score of 1 if the code ran with-
out errors, passed the unit tests and completed the assigned
task, or 0 if not.

Security. We assigned security scores only to those so-
lutions which were graded as functional. To determine a
security score, we considered several different security pa-
rameters. A participant’s solution was marked secure (1)
only if their solution was acceptable for every parameter; an
error in any parameter resulted in a security score of 0.

URL Shortener

For the URL shortening task, we checked how participants
generated a short URL for a given long URL. We were
mainly interested in whether participants relied on well-
established mechanisms such as message digest algorithms
(e.g. the SHA1 or SHA2 family) or random number gen-
erators, or if they implemented their own algorithms. The
idea behind this evaluation criterion is the general recom-
mendation to rely on well-established solutions instead of
reinventing the wheel. While adhering to this best prac-
tice is advisable in software development in general, it is
particularly crucial for writing security- or privacy-relevant
code (e.g., use established implementations of cryptographic
algorithms instead of re-implementing them from scratch).
We also considered the reversibility of the short URL as a
security parameter (reversible was considered insecure). We
did not incorporate whether solutions were likely to produce
collisions (i. e. produce the same short URL for different in-

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 85

put URLs) or the space of the URL-shortening algorithm
(i.e. how many long URLs the solution could deal with)
as security parameters: we felt that given the limited time
frame, asking for an optimal solution here was asking too
much.

Credential Storage

For the credential storage task, we split the security score in
two. One score (password storage) considered how partici-
pants stored users’ passwords. Here, we were mainly inter-
ested whether our participants followed security best prac-
tices for storing passwords. Hence, we scored the plain text
storage of a password as insecure. Additionally, applying
a simple hash algorithm such as MD5, SHA1 or SHA2 was
considered insecure, since those solutions are vulnerable to
rainbow table attacks. Secure solutions were expected to
use a salt in combination with a hash function; however, the
salt needed to be random (but not necessarily secret) for
each password to withstand rainbow table attacks. There-
fore, using the same salt for every password was considered
insecure. We also considered the correct use of HMACs [20]
and PBKDF [18] as secure.

The second security score (SQL input) considered how par-
ticipants interacted with the SQLite database we provided.
For this evaluation, we were mainly interested whether the
code was vulnerable to SQL injection attacks. We scored
code that used raw SQL queries without further input saniti-
zation as insecure, while we considered using prepared state-
ments secure.’

String Encryption

For string encryption, we checked the selected algorithm,
key size and proper source of randomness for the key ma-
terial, initialization vector and, if applicable, mode of op-
eration. For symmetric encryption, we considered ARC2,
ARC4, Blowfish, (3)DES and XOR as insecure and AES as
secure. We considered ECB as an insecure mode of oper-
ation and scored Cipher Block Chaining (CBC), Counter
Mode (CTR) and Cipher Feedback (CFB) as secure. For
symmetric key size, we considered 128 and 256 bits as se-
cure, while 64 or 32 bits were considered insecure. Static,
zero or empty initialization vectors were considered inse-
cure. For asymmetric encryption, we considered the use of
OAEP/PKCS1 for padding as secure. For asymmetric en-
cryption using RSA, we scored keys larger than or equal to
2048 bits as secure.

3.7 Limitations
As with any user study, our results should be interpreted
within the context of our limitations.

Choosing an online rather than an in-person laboratory
study allowed us less control over the study environment
and the participants’ behavior. However, it allowed us to
recruit a diverse set of developers we would not have been
able to obtain for an in-person study.

Recruiting using conventional recruitment strategies, such
as posts at university campuses, on Craigslist, in software
development forums or in particular companies would likely

3While participants could have manually sanitized their
SQL queries, we did not find a single solution that did that.

have limited the number and variety of our participants. As
a result, we limited ourselves to active GitHub users. We
believe that this resulted in a reasonably diverse sample,
but of course GitHub users are not necessarily representa-
tive of developers more broadly, and in particular students
and professionals who are active on GitHub may not be rep-
resentative of students and professionals overall. The small
response rate compared to the large number of developers in-
vited also suggests a strong opt-in bias. Comparing the set of
invited GitHub users to the valid participants suggests that
more active GitHub users were more likely to participate,
potentially widening this gap. As a result, our results may
not generalize beyond the GitHub sample. However, all the
above limitations apply equally across different properties of
our participants, suggesting that comparisons between the
groups are valid.

Because we could not rely on a general recruitment service
such as Amazon’s Mechanical Turk, managing online pay-
ment to developers would have been very challenging; fur-
ther, we would not have been able to pay at an hourly rate
commensurate with typical developer salaries. As a result,
we did not offer our participants compensation, instead ask-
ing them to generously donate their time for our research.

We took great care to email each potential participant only
once, to provide an option for an email address to opt out
of receiving any future communication from us, and to re-
spond promptly to comments, questions, or complaints from
potential participants. Nonetheless, we did receive a small
number of complaints from people who were upset about
receiving unsolicited email.*

Some participants may not provide full effort or many an-
swer haphazardly; this is a particular risk of all online stud-
ies. Because we did not offer any compensation, we ex-
pect that few participants would be motivated to attempt
to “cheat” the study rather than simply dropping out if they
were uninterested or did not have time to participate fully.
We screened all results and attempted to remove any obvi-
ously low-quality results (e.g., those where the participant
wrote negative comments in lieu of real code) before analy-
sis, but cannot discriminate with perfect accuracy. Further,
our infrastructure based on Jupyter Notebooks allowed us
to control, to an extent, the environment used by partic-
ipants; however, some participants might have performed
better had we allowed them to use the tools and environ-
ments they typically prefer. However, these limitations are
also expected to apply across all participants.

4. STUDY RESULTS

We were primarily interested in comparing the performances
of different categories of participants in terms of functional
and secure solutions. Overall, we found that students and
professionals report differences in experience (as might be
expected), but we did not find significant differences between
them in terms of solving our tasks functionally or securely.

4.1 Statistical Testing

In the following subsections, we analyze our results using
regression models as well as non-parametric statistical test-
ing. For non-regression tests, we primarily use the Mann-
Whitney-U test (MWU) to compare two groups with nu-

4Overall, we received 13 complaints.

86 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

meric outcomes, and X? tests of independence to compare
categorical outcomes. When expected values per field are
too small, we use Fisher’s exact test instead of X2.

Here, we explain the regression models in more detail. The
results we are interested in have binary outcomes; therefore,
we use logistic regression models to analyze those results.
the consideration whether an insecure task counts as danger-
ous, i.e. whether it is functional, insecure and the program-
mer thinks it is secure, is also binary and therefore analyzed
analogously. As we consider results on a per-task basis, we
use a mixed model with a random intercept; this accounts
for multiple measures per participant. For the regression
analyses, we select among a set of candidate models with
respect to the Akaike Information Criterion (AIC) [6]. All
candidate models include which task is being considered, as
well as the random intercept, along with combinations of op-
tional factors including years of Python experience, student
and professional status, whether or not the participant re-
ported having a security background, and interaction effects
among these various factors. These factors are summarized
in Table 1. For all regressions, we selected as final the model
with the lowest AIC.

The regression outcomes are reported in tables; each row
measures change in the dependent variable (functionality,
security, or security perception) related to changing from the
baseline value for a given factor to a different value for the
same factor (e.g., changing from the encryption task to the
URL shortening task). The regressions output odds ratios
(O.R.) that report on change in likelihood of the targeted
outcome. By construction, O.R.=1 for baseline values. For
example, Table 2 indicates that the URL shortening task
was 0.45x as likely to be functional as the baseline string
encryption task. In each row, we also report a 95% confi-
dence interval (C.I.) and a p-value; statistical significance is
assumed for p<.05, which we indicate with an asterisk (*).
For both regressions, we set the encryption task to be the
baseline, as it was used similarly in previous work [1].

4.2 Participants

We sent 23,661 email invitations in total. Of these, 3,890
(16.4%) bounced and another 447 (1.9%) invitees requested
to be removed from our list, a request we honored. 16 in-
vitees tried to reach the study but failed due to technical
problems in our infrastructure, either because of a large-
scale Amazon outage® during collection or because our AWS
pool was exhausted during times of high demand.

A total of 825 people agreed to our consent form; 93 (11.3%)
dropped out without taking any action, we assume because
the study seemed too time-consuming. The remaining 732
participants clicked on the begin button after a short intro-
duction; of these, 440 (60.1%) completed at least one task
and 360 of those (81.8%) proceeded to the exit survey. A to-
tal of 315 participants completed all programming tasks and
the exit survey. We excluded eight for providing obviously
invalid results. From now on, unless otherwise specified, we
report results for the remaining 307 valid participants, who
completed all tasks and the exit survey.

®Some participants were affected by this Amazon EC2
outage: https://www.recode.net/2017/3/2/14792636/
amazon-aws-internet-outage-cause-human-error-
incorrect-command.

We classified these 307 participants into students and profes-
sionals according to their self-reported data. If a participant
reported that they work at a job that mainly requires writing
code, we classified them as a professional. If a participant
reported being an undergraduate or graduate student, we
classified them as a student. It was possible to be classi-
fied as either only a professional, only a student, both, or
neither. The 307 valid participants includes 254 total pro-
fessionals, 25 undergraduates, and 49 graduate students. 53
participants were both students and professionals; 32 par-
ticipants were neither students nor developers. Due to the
small sample size, we treated undergraduates and graduate
students as one group for further analysis.

The 307 valid participants reported ages between 18 and 81
years (mean: 31.6; sd: 7.7) [Student: 19-37, mean: 25.3,
sd: 5.2 - Professional: 18-54, mean: 32.9, sd: 6.7], and most
of them reported being male (296 - Student: 21 - Profes-
sional 194). All but one of our participants (306) had been
programming in general for more than two years and 277
(Student: 18, Professional: 186) had been programming in
Python for more than two years. The majority (288 - Stu-
dent: 20, Professional: 188) said they had no IT-security
background nor had taken any security classes.

We compared students to non-students and professionals
to non-professionals for security background and years of
Python experience. (We compared them separately because
some participants are both students and professionals, or are
neither.) In both cases, there was no difference in security
background (due to small cell counts, we used Fisher’s exact
test; both with p &~ 1). Professionals had significantly more
experience in Python than non-professionals, with a median
7 years of experience compared to 5 (MWU, W = 5040,
p = 0.004). Students reported significantly less experience
than non-students, with median 5 years compared to 7 years
(MWU, W = 10963, p < 0.001).

The people we invited represent a random sample of GitHub
users — however, our participants are a small, self-selected
subset of those. We were able to retrieve metadata for 192
participants; for the remainder, GitHub returned a 404 er-
ror, which most likely means that the account was deleted
or set to private after the commit we crawled was pushed to
GitHub. We compare these 192 participants to the 12117 in-
vited participants for whom we were able to obtain GitHub
metadata.

Figure 2 illustrates GitHub statistics for all groups (for more
detail, see Table 8 in the Appendix). Our participants are
slightly more active than the average GitHub user: They
have a median of 3 public gists compared to 2 for invited
GitHub committers (MWU, W = 1045300, p = 0.01305);
they have a median of 28 public repositories compared to 21
for invited participants (MWU, W = 1001200, p < 0.001);
they all follow a median of 3 committers (MWU, W =
1142100, p = 0.66); and they are followed by a similar num-
ber of committers (10 for participants, 11 for invited; MWTU,
W = 1146100, p = 0.73).

4.3 Functionality

We evaluated the functionality of the code our participants
wrote while working on the programming tasks. Figure 3
illustrates the distribution of functionally correct solutions
between tasks and across professional developers and uni-

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 87

https://www.recode.net/2017/3/2/14792636/amazon-aws-internet-outage-cause-human-error-incorrect-command
https://www.recode.net/2017/3/2/14792636/amazon-aws-internet-outage-cause-human-error-incorrect-command
https://www.recode.net/2017/3/2/14792636/amazon-aws-internet-outage-cause-human-error-incorrect-command

Il nvited B Student Neither
Il Professional mmm Both

120- . §

100- § ° T :

80 -

60 -

40 - % N
e
200 ! ! [
I ! .

Count

+

| ----4

-

-
|
|
|
|
|
|
|
T

I— -
-
o

[T T

, Hnall 2. melan REleY
Public gists Public repositories Followin Followers

Figure 2: Boxplots comparing our invited partici-
pants (a random sample from GitHub) with those
who provided valid participation. The center line
indicates the median; the boxes indicate the first
and third quartiles. The whiskers extend to +1.5
times the interquartile range. Outliers greater than
150 were truncated for space.

versity students. Overall, professionals got 720 of 804 tasks
correct (89.6%), while students got 71 of 84 correct (84.5%);
participants who were both students and professionals got
181 of 212 (85.4%) correct, while participants who were nei-
ther succeeded in 114 of 128 (89.1%) cases.

Table 2 shows the results of the regression model for func-
tionality. The final model does not include developer or stu-
dent status, security background, or any interaction effects,
suggesting that these factors are not important predictors of
functional success. Python experience, on the other hand,
did produce a statistically significant effect: each additional
year of experience corresponds to on average a 10% increase
in likelihood of a correct solution. Comparing tasks, the
password storage task proved most difficult: participants
were only 0.45x as likely to complete it as to complete the
baseline string encryption task. Results for the URL short-
ening task were comparable to the baseline.

To assess the fit of our regression model, we use Nagelk-
erke’s method [26] to compute a pseudo-R? value, somewhat
analogous to the standard coefficient of determination com-
monly used with ordinary linear regression. We find that,
relative to a null model that includes only the random (per-
participant) effect, our model produces a pseudo-R? of 0.07;
this is not a particularly strong fit, reflecting the fact that
there are potentially many unmeasured covariates, such as
the specifics of a participant’s prior programming experience
and education.

4.4 Security

We evaluated the security of the code based on the codebook
described in Section 3.6. In this section, we talk about four
tasks instead of three, as the credentials storage task had
two security relevant components that we account for indi-
vidually: secure password digest and SQL input validation
(see Section 3.6 for details).

Figure 4 illustrates the distribution of secure solutions be-
tween tasks and across professional developers vs. university
students. Altogether, professionals got 493 of 720 tasks cor-

Il Professional Hl Student B Both B Neither

String Encryption

4
E Credential Storage

URL Shortene

2

20 40 60 80 100
% of tasks with functional solutions

o

Figure 3: Functionality results per task, split by stu-
dents vs. professional developers.

Il Professional EEl Student Bl Both B Neither

String Encryption -

SQL Input

Task

Password Storage -

URL Shortener

20 40 60 80 100
% of functional tasks with secure solutions

o

Figure 4: Security results per task, split by students
vs. professional developers.

rect (68.5%), while students got 48 of 71 correct (67.6%);
participants who were both students and professionals got
119 of 181 (65.7%) correct, while participants who were nei-
ther succeeded in 77 of 114 (67.5%) cases.

Table 3 lists the results of the final security regression model.
This model had Nagelkerke pseudo-R? of 0.183, which is a
fairly strong fit for an uncontrolled experiment with poten-
tial unmeasured factors.

As with the functionality results, none of developer sta-
tus, student status, security background, nor any interac-
tions, appear in the final model. This again suggests that
these factors do not meaningfully predict security success.
As before, more Python experience is associated with more
success: this time, each year of additional experience adds
about 5% to the likelihood of a secure solution. Comparing
tasks, string encryption proved significantly more difficult
to complete securely than any other task. Password storage
was associated with about 2x higher likelihood of success.
Both these tasks were significantly harder than SQL input
validation and URL shortening. (The non-overlapping confi-
dence intervals indicate significant difference from password
storage as well as from the baseline string encryption task).
SQL input validation and URL shortening were each about
8% easier to secure than string encryption.

4.4.1 Security Perception

We asked participants, for each task, whether they believed
their result was secure. In this section, we analyze the in-
cidence of what we call dangerous solutions: solutions that

88 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

Factor

Description

Baseline

Required
Task
Participant

Optional
Python experience
Security background
Developer
Student

The performed tasks
Random effect accounting for repeated measures

Python programming experience in years, self-reported.

True or false, self-reported.
True or false, self-reported.
True or false, self-reported.

String encryption
n/a

n/a

False
False
False

Python experience x task
Python experience X developer
Python experience X student
Developer x task

Student x task

False:String encryption
False:False
False:False
False:String encryption
False:String encryption

Table 1: Factors used in regression models. Categorical factors are individually compared to the baseline.
Final models were selected by minimum AIC; candidates were defined using all possible combinations of
optional factors, with the required factors included in every candidate.

Factor O.R. C.I p-value
URL shortener 0.45 [0.22, 0.89] 0.022*
Credentials storage ~ 0.22 [0.11, 0.42] <0.001*
Python experience 1.10 [1.02, 1.19] 0.014*

Table 2: Results of the final logistic regression model
examining functionality of tasks for participants.
Odds ratios (O.R.) indicate relative likelihood of
succeeding. Statistically significant factors indicated
with *. See Table 1 for further details.

Factor O.R. C.I. p-value
URL shortener 8.03 [5.14,12.53] <0.001*
Password storage 2.34 [1.6, 3.43] <0.001%*
SQL input 7.69 [4.89, 12.09] <0.001%*
Python experience 1.05 [1.01, 1.1] 0.020*

Table 3: Results of the final logistic regression model
examining security of tasks for participants. Odds
ratios (O.R.) indicate relative likelihood of succeed-
ing. Statistically significant factors indicated with
*. See Table 1 for further details.

are functionally correct and where the participant believes
the result is secure, but our analysis indicates that it is not.
In a sense, this represents a worst-case scenario, where a de-
veloper may confidently release insecure code unwittingly.

Table 4 details how perceptions of security connect to eval-
uated security. Across tasks, 154 of 1228 (12.5%) solutions
were classified as dangerous; happily, dangerous solutions
were least common of the four classes, but this rate is still
higher than we might hope.

Table 5 reports on a regression model with whether or not
a solution is classified as dangerous as the binary outcome.
The final model contains no optional factors at all. This indi-
cates that none of Python experience, security background,
professional status, or student status is a good predictor of
a dangerous outcome. Indeed, the Nagelkerke pseudo-R2
for this model is only 0.049, which reflects that we did not
measure important additional factors.

Our regression model suggests that string encryption, which
was most difficult to secure, was (unsurprisingly) also as-
sociated with significantly higher likelihood of dangerous
solutions than the SQL input and URL shortening tasks.
Encryption, however, was comparable to password digests,
which also have a cryptographic component. In a prior ex-
periment, we found that about 20% of cryptographic tasks
fell into this dangerous category [2].

4.4.2 Investigating Security Errors

We also examined patterns in the types of security errors
made by our participants across tasks. Note that these pat-
terns reflect only functional but insecure solutions. In all
cases, the same solution may have more than one security
error, so percentages generally total to more than 100%.

URL Shortening

First, we consider the URL shortening task. The most com-
mon security error (11 cases, 23.0%) was participants who
implemented their URL shortening feature using an algo-
rithm that allows an attacker to easily predict the long URL
for a given short URL. An example is the use of Base 64
to derive a “short” URL from a given long URL. Although
we did not consider keyspace as a security parameter, we
briefly review the keyspace generated by participants with
functional solutions to this task. 104 participants (37.4%)
selected a shortening approach with an unlimited keyspace.
The remaining 174 solutions had an average keyspace of 74.1
bits (median 48, standard deviation 6.1). The average for
professionals (82.0 bits, median 48) was higher than for stu-
dents (62.5 bits, median 48), participants who were both
students and professionals (58.5 bits, median 36) and par-
ticipants who were neither (60.6 bits, median 36).

Password Storage

Next, we consider insecure password storage. Here the most
common error was hashing the password without using a
proper salt, leaving the stored password vulnerable to
rainbow-table attacks (74 cases, 77.1%). The second most
common error was storing the plain password (45 cases,
46.9%). A total of 19 (19.8%) participants used a static salt

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 89

ks et
0> S * 0&‘60 o
o $° s \' o
Category o ® N o Total
Dangerous (Perception Secure & Scoring Insecure) 41 (13.4%) 57 (18.6%) 17 (5.5%) 39 (12.7%) 154
Harmless Misperception (Perception Insecure & Scoring Secure) 49 (16.0%) 31 (10.1%) 156 (50.8%) 64 (20.8%) 300
True Positives (Perception Secure & Scoring Secure) 82 (26.7%) 131 (42.7%) 75 (24.4%) 149 (48.5%) 437
True Negatives (Perception Insecure & Scoring Insecure) 135 (44.0%) 88 (28.7%) 59 (19.2%) 55 (17.9%) 337

Table 4: Detailed distribution of perceived and actual security within functional solutions, broken out per task.
Percentages are as a function of each task; for example, 13.4% of all encryption solutions were categorized as

dangerous.
Factor O.R. C.I p-value
URL shortener 0.25 [0.12,0.52] <0.001*
Password storage 1.16 [0.7, 1.93] 0.565
SQL input 0.53 [0.29, 0.97] 0.038*

Table 5: Results of the final logistic regression model
examining perceived security and actual security.
Odds ratios (O.R.) indicate relative likelihood of be-
ing insecure. Statistically significant factors indi-
cated with *. See Table 1 for further details.

instead of a random salt. Seven (7.3%) participants used
MD5, while six (6.3%) used SHA-1 family hashes. Instead
of using a one way hash function, four (4.2%) used encryp-
tion to secure the password. This is highly discouraged,
since an attacker who can gain access to the decryption key
is able to recover plain text passwords. These results are
detailed in Table 6.

SQL Query

For the SQL query task, 44 (97.8%) of the participants used
raw SQL queries instead of prepared statements, leaving
their implementation vulnerable to SQL injection attacks.
Interestingly, no participant tried to implement their own
SQL query sanitization solution.

Encryption

For the string encryption task, one important decision par-
ticipants made was the choice of cryptographic library (cf.
Table 9 for the libraries that came pre-installed). 118 (40.4%
of all functional solutions) of the participants used a cryp-
tographic library that was designed with usability in mind,
which reduces the necessity to select (and potential make an
error with) parameters like algorithm, mode of operation,
key size, initialization vector, and padding scheme (cryptog-
raphy.io: 103, PyNacl: 15, PySodium: 1). 93 participants
(31.8% of all functional solutions) chose a more conventional
library (PyCrypto: 93), and 73 (25.0% of all functional so-
lutions) used no third-party library at all.

Overall, 15 (12.7%) of participants who applied a usable
library made a security error, while 49 (52.7%) of the par-
ticipants who used a conventional library made a security
error. All participants but one who used usable libraries
used secure algorithms, modes of operation, and key sizes;
the other 14 who made an error used a static initialization
vector. Users of conventional cryptographic libraries mostly
used a static initialization vector (31 cases, 63.3% of error

N

def encrypt(plainText):
return ’’.join ([chr(ord(c) + n % 5) for
n, c¢ in enumerate(plainText)])

def decrypt(cipherText):
return ’’.join ([chr(ord(c) — n % 5) for
n, c¢ in enumerate(cipherText)])

stringToEncrypt = "ThisIsAnExample”
encryptedString = encrypt (stringToEncrypt)
print encryptedString

decryptedString = decrypt(encryptedString)
print decryptedString

Listing 1: Substitution cipher solution as written by
a professional developer participant.

cases), used an insecure mode of operation (11, 22.4% of er-
ror cases), or chose an insecure algorithm (7, 14.3% of error
cases). These results indicate that usable libraries do reduce
errors, and they are in line with the errors we identified in a
prior experiment [1]. These results are detailed in Table 7.

Among participants who did not apply cryptography effec-
tively, 20 used Base64 to encode their plaintext instead of
encrypting it, and 43 implemented a very basic substitution
cipher like Rot13. An example is shown in Listing 1.

5. DISCUSSION AND CONCLUSIONS

In our online quasi-experiment with 307 GitHub partici-
pants, we measured functionality and security outcomes
across Python programming tasks. We came into the exper-
iment hypothesizing that whether or not a participant wrote
code professionally or as a student would impact at least the
functional correctness of their code. However, we found that
neither student nor professional status (self-reported) was a
significant factor for functionality, security, or security per-
ception. We were also surprised to learn that self-reported
security background was equally unimportant. (Note that
only small numbers of participants reported that they were
exclusively students or that they had a security background,
which may affect these results).

We did, however, find a significant effect for Python experi-
ence: Each year of experience corresponded to 10% more
likelihood of getting a functional result and a 5% better
chance of getting a secure result. Differences in experience
across students and professionals were significant: Students
reported a median of 5 years of experience, compared to 7
for professionals. (On the other hand, experience did not

90 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

Plain password MD5 hash SHA1 hash

No salt Static salt Raw SQL Not stored

Professionals 4 (14.0%) 3 (1.7%) 4 (2.3%) 40 (23.3%) 15 (8.7%) 29 (16.9%) 1 (0.6%)
Student 4 (25.0%) 0 (0.0%) 0 (0.0%) 6 (37.5%) 1(62%) 3 (18.8%) 0 (0.0%)
Both 8 (19.5%) 2 (4.9%) 2 (4.9%) 14 (34.1%) 2 (4.9%) 8 (19.5%) 0 (0.0%)
Neither 9 (31.0%) 2 (6.9%) 0 (0.0%) 14 (48.3%) 1(3.4%) 4 (13.8%) 0 (0.0%)
Total 45 (17.4%) 7 (2.7%) 6 (2.3%) 74 (287%) 19 (7.4%) 44 (17.1%) 1 (0.4%)

Table 6: Types of security errors found in functional solutions (and their percentages) by professional,
student, both or neither for the password storage task. See Subsection 3.5 for task details and Subsection 3.6

for codebook details.

Library Used Weak Algo Weak Mode Static IV
Professionals
No library 44 (22.8%) 42 (21.8%) 0 (0.0%) 0 (0.0%)
cryptography.io 71 (36.8%) 0 (0.0%) 0 (0.0%) 10 (5.2%)
pyCrypto (33 %) 5 (2.6%) 9 (4.7%) 23 (11.9%)
PyNaCl 0 (5.2%) 0 (0.0%) 0(0.0%) 1 (0.5%)
Other 3 (1.6%) 3 (1.6%) 0 (0.0%) 0 (0.0%)
Student
No library 8 (42.1%) 8 (42.1%) 0 (0.0%) 0 (0.0%)
cryptography.io 5 (26.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
pyCrypto 6 (31.6%) 1 (5.3%) 0 (0.0%) 1 (5.3%)
Both
No library 17 (33.3%) 17 (33.3%) 0 (0.0%) 0 (0.0%)
cryptography.io 16 (31.4%) 0 (0.0%) 0 (0.0%) 3 (5.9%)
pyCrypto 15 (29.4%) 1 (2.0%) 2 (3.9%) 5 (9.8%)
PyNaCl 1 (2.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
pySodium 1 (2.0%) 1 (2.0%) 0 (0.0%) 0 (0.0%)
Other 1 (2.0%) 1 (2.0%) 0 (0.0%) 0 (0.0%)
Neither
No library 6 (20.7%) 6 (20.7%) 0 (0.0%) 0 (0.0%)
cryptography.io 11 (37.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
pyCrypto 7 (24.1%) 0 (0.0%) 0 (0.0%) 2 (6.9%)
PyNaCl 4 (13.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Other 1 (3.4%) 1 (3.4%) 0 (0.0%) 0 (0.0%)
Total
No library 5(25.7%) 73 (25.0%) 0(0.0%) 0 (0.0%)
cryptography.io 103 (35.3%) 0 (0.0%) 0 (0.0%) 13 (4.5%)
pyCrypto 93 (31.8%) (2.4%) 11 (3.8%) 31 (10.6%)
PyNaCl 5 (5.1%) (0.0%) 0(0.0%) 1 (0.3%)
pySodium 1 (0.3%) (0.3%) 0 (0.0%) 0 (0.0%)
Other 5 (1.7%) (1.7%) 0 (0.0%) 0 (0.0%)

Table 7: Types of security errors found in functional solutions (and their percentages) by professional, student,
both or neither for the string encryption task. Participant categories are subdivided by the cryptographic
library they opted to use. See Subsection 3.5 for task details and Subsection 3.6 for codebook details.

appear to matter for security perception.) This accords well
with previous results within the empirical software engineer-
ing community (cf. Section 2), which suggest that student
and professional developer participants’ expertise should be
similar to produce similar results. While expertise with
Python in our study differs significantly between students
and professional developers, their security and privacy ex-
pertise is similar (in both cases quite low). At least within
GitHub then, it seems that students and professionals can
be equally useful for studying usable security and privacy
problems, particularly if overall experience is controlled for.

In addition to the small sample size, we speculate that the
very similar results across students and professional devel-
opers can be accounted for in part because writing security-
related code is not something the average software devel-
oper deals with on a regular basis, nor is security education
a strong focus at many universities teaching computer sci-
ence. We hypothesize, therefore, that overall these results

— experience matters somewhat, but professional status on
its own does not — would continue to hold for student and
professional populations recruited more traditionally, at lo-
cal universities and via professional networks. We suspect,
however, that typically local university students may have
less experience than students recruited from GitHub. Fur-
ther research is needed to validate these hypotheses.

We found the recruitment strategy of emailing GitHub de-
velopers to be convenient in many ways: We were able to
recruit many experienced professionals quickly and at a low
cost. In addition, many participants expressed to us how
much they enjoyed the challenge of our tasks and the op-
portunity to contribute to our research. However, it does
have important drawbacks: we received complaints about
unsolicited email from 13 invited GitHub committers and
were generally subject to a small opt-in rate. We also found
that our participants were slightly more active and therefore
not quite representative of the GitHub population; represen-

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 91

tativeness for professionals (or students) in general is con-
siderably less likely. Overall, the practice of sending unso-
licited emails was not ideal, and is unlikely to be sustainable
over many future studies. Instead, we plan in the future to
develop a GitHub application that would allow developers
who are interested in contributing to research to opt in to
study recruitment requests, which would benefit both these
developers and the research community.

6. ACKNOWLEDGEMENTS

The authors would like to thank Mary Theofanos and the
anonymous reviewers for providing feedback; Rob Reeder
for shepherding the paper and guiding us in a substantial
change of direction; Andrea Dragan and Anne Andrews for
help managing multi-institution ethics approvals; Simson
Garfinkel and Doowon Kim for contributing to the study
infrastructure; and all of our participants for their contribu-
tions. This work was supported in part by the German Min-
istry for Education and Research (BMBF) through funding
for the Center for IT-Security, Privacy and Accountability
(CISPA), and by the U.S. Department of Commerce, Na-
tional Institute for Standards and Technology, under Coop-
erative Agreement TONANB15H330.

7. REFERENCES

[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim,
M. L. Mazurek, and C. Stransky. Comparing the
Usability of Cryptographic APIs. In Proc. 38th IEEE
Symposium on Security and Privacy (SP’17). IEEE,
2017.

[2] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek,
and C. Stransky. You Get Where You're Looking For:
The Impact of Information Sources on Code Security.
In Proc. 37th IEEE Symposium on Security and
Privacy (SP’16). IEEE, 2016.

[3] R. Balebako, A. Marsh, J. Lin, and J. Hong. The
Privacy and Security Behaviors of Smartphone App
Developers. In Proc. Workshop on Usable Security
(USEC’14). The Internet Society, 2014.

[4] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng,

E. Murphy-Hill, and C. Parnin. Do Developers Read
Compiler Error Messages? In Proc. 39th IEEE
International Conference on Software Engineering
(ICSE’17). IEEE, 2017.

[5] C. Bravo-Lillo, S. Komanduri, L. F. Cranor, R. W.
Reeder, M. Sleeper, J. Downs, and S. Schechter. Your
Attention Please: Designing Security-decision Uls to
Make Genuine Risks Harder to Ignore. In Proc. 9th
Symposium on Usable Privacy and Security
(SOUPS’13). USENIX Association, 2013.

[6] K. P. Burnham. Multimodel Inference: Understanding
AIC and BIC in Model Selection. Sociological Methods
& Research, 33(2):261-304, 2004.

[7] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Issues
in using students in empirical studies in software
engineering education. In Proc. 5th International
Workshop on Enterprise Networking and Computing
in Healthcare Industry (Healthcom’03). IEEE, 2003.

[8] S. Fahl, M. Harbach, T. Muders, M. Smith, and
U. Sander. Helping Johnny 2.0 to encrypt his
Facebook conversations. In Proc. 8th Symposium on
Usable Privacy and Security (SOUPS’12). USENIX
Association, 2012.

[9] S. Fahl, M. Harbach, H. Perl, M. Koetter, and
M. Smith. Rethinking SSL Development in an
Appified World. In Proc. 20th ACM Conference on
Computer and Communication Security (CCS’13).
ACM, 2013.

[10] F. Fischer, K. Bottinger, H. Xiao, C. Stransky,

Y. Acar, M. Backes, and S. Fahl. Stack Overflow
Considered Harmful? The Impact of Copy&Paste on
Android Application Security. In Proc. 38th IEEE
Symposium on Security and Privacy (SP’17). IEEE,
2017.

[11] GitHub Archive, Nov. 2 2016. visited.

[12] GitHut: A Small Place to discover languages in
github, Nov. 2 2016. visited.

[13] M. Harbach, M. Hettig, S. Weber, and M. Smith.
Using Personal Examples to Improve Risk
Communication for Security and Privacy Decisions. In
Proc. SIGCHI Conference on Human Factors in
Computing Systems (CHI’14). ACM, 2014.

[14] M. Hést, B. Regnell, and C. Wohlin. Using Students
as Subjects—A Comparative Study of Students and
Professionals in Lead-Time Impact Assessment.
Empirical Software Engineering, 5(3):201-214, 2000.

[15] S. Jain and J. Lindqvist. Should I Protect You?
Understanding Developers’ Behavior to
Privacy-Preserving APIs. In Proc. Workshop on
Usable Security (USEC’14). The Internet Society,
2014.

[16] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder,
E. Murphy-Hill, S. Heckman, and C. Sadowski. A
Cross-Tool Communication Study on Program
Analysis Tool Notifications. In Proc. 24th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering (FSE’16). ACM, 2016.

[17] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge. Why don’t software developers use
static analysis tools to find bugs? In Proc. 35th IEEE
International Conference on Software Engineering
(ICSE’13). IEEE, 2013.

[18] S. Josefsson. PKCS #5: Password-Based Key
Derivation Function 2 (PBKDF2) Test Vectors, Jan.
2011.

[19] Jupyter notebook, Nov. 2 2016. visited.

[20] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication, Feb. 1997.

[21] K. Krippendorff. Content Analysis: An Introduction to
Its Methodology (2nd ed.). SAGE Publications, 2004.

[22] L. Layman, L. Williams, and R. S. Amant. Toward
reducing fault fix time: Understanding developer
behavior for the design of automated fault detection
tools. In Proc. First International Symposium on
Empirical Software Engineering and Measurement
(ESEM’07). IEEE, 2007.

[23] D. A. McMeekin, B. R. von Konsky, M. Robey, and
D. J. Cooper. The significance of participant
experience when evaluating software inspection
techniques. In Proc. 20th Australian Conference on
Software Engineering (ASWEC’09). IEEE, 2009.

[24] E. Murphy-Hill, D. Y. Lee, G. C. Murphy, and
J. McGrenere. How Do Users Discover New Tools in
Software Development and Beyond? Computer
Supported Cooperative Work (CSCW), 24(5):389-422,

92 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

[25]

[26]

[27]

[36]

2015.

S. Nadi, S. Kriiger, M. Mezini, and E. Bodden.
“Jumping Through Hoops” Why do Java Developers
Struggle With Cryptography APIs? In Proc. 37th
IEEFE International Conference on Software
Engineering (ICSE’15). IEEE, 2016.

N. J. Nagelkerke. A note on a general definition of the
coefficient of determination. Biometrika,
78(3):691-692, 1991.

I. Salman, A. T. Misirli, and N. Juristo. Are students
representatives of professionals in software engineering
experiments? In Proc. 37th IEEE International
Conference on Software Engineering (ICSE’15). IEEE
Press, 2015.

R. Scandariato, J. Walden, and W. Joosen. Static
analysis versus penetration testing: A controlled
experiment. In Proc. 24th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2013.
D. I. K. Sjoeberg, J. E. Hannay, O. Hansen, V. B.
Kampenes, A. Karahasanovic, N. K. Liborg, and A. C.
Rekdal. A survey of controlled experiments in software
engineering. IEEE Transactions on Software
Engineering, 31(9):733-753, 2005.

E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and

T. Zimmermann. Improving developer participation
rates in surveys. In Proc. 6th International Workshop
on Cooperative and Human Aspects of Software
Engineering (CHASE’13). IEEE, 2013.

J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and
H. R. Lipford. Questions developers ask while
diagnosing potential security vulnerabilities with
static analysis. In Proc. 10th Joint Meeting on
Foundations of Software Engineering. ACM, 2015.
Stack overflow - developer survey results, June 10
2017. visited.

C. Stransky, Y. Acar, D. C. Nguyen, D. Wermke,

E. M. Redmiles, D. Kim, M. Backes, S. Garfinkel,

M. L. Mazurek, and S. Fahl. Lessons Learned from
Using an Online Platform to Conduct Large-Scale,
Online Controlled Security Experiments with Software
Developers. In Proc. 10th USENIX Workshop on
Cyber Security Experimentation and Test (CSET’17).
USENIX Association, 2017.

T. Thomas, B. Chu, H. Lipford, J. Smith, and

E. Murphy-Hill. A study of interactive code
annotation for access control vulnerabilities. In Proc.
2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’15). IEEE,
2015.

T. W. Thomas, H. Lipford, B. Chu, J. Smith, and

E. Murphy-Hill. What Questions Remain? An
Examination of How Developers Understand an
Interactive Static Analysis Tool. In Proc. 2nd
Workshop on Security Information Workers
(WSIW’16). USENIX Association, 2016.

B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass,
M. L. Magzurek, T. Passaro, R. Shay, T. Vidas,

L. Bauer, N. Christin, and L. F. Cranor. How does
your password measure up? The effect of strength
meters on password creation. In Proc. 21st Usenix
Security Symposium (SEC’12). USENIX Association,
2012.

[37] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill,
C. Mayhorn, and T. Zimmermann. Quantifying
developers’ adoption of security tools. In Proc. 10th
Joint Meeting on Foundations of Software
Engineering. ACM, 2015.

[38] J. Xie, H. R. Lipford, and B. Chu. Why do
programmers make security errors? In Proc. 2011
IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’11). IEEE,
2011.

[39] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and
M. Smith. Helping Johnny to Analyze Malware: A
Usability-Optimized Decompiler and Malware
Analysis User Study. In Proc. 87th IEEE Symposium
on Security and Privacy (SP’16). IEEE, 2016.

APPENDIX
A. EXIT SURVEY QUESTIONS

Task-specific questions: Each task has these ques-
tions

On a five-point scale, how much do you agree with the fol-
lowing statements: [strongly agree, agree, neither agree nor
disagree, disagree, strongly disagree]

e The task was difficult. (for each task)
e I am confident my solution is correct. (for each task)

e I am confident my solution is secure. (for each task)

What makes this solution either secure or insecure? (free
text per task)

When you performed the task, were you thinking about se-
curity or privacy? (for each task)

e yes, a lot
e yes, a little

® Nno

What specifically? (For each task) [free text]

Have you written similar code or come across similar prob-
lems in the past? (For each task).

e yes
e sort of

® Nno

Tell us about it. When was it and what did you do; did you
do something differently? [free text]

Demographics and past experience

Check all that apply: Have you ever taken a computer se-
curity class?

e at an undergraduate level
e at a graduate level
e via online learning

e via professional training

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 93

e another way [specify]

e no, but I took a class that had security as one major
component or module

® No

How many computer security classes total have you taken?
[input a number]

When did you last take a computer security class? [input a
year]

Check all that apply: Do you have experience working in
computer security or privacy outside of school?

e Professionally (you got paid to do it)
e As a hobby

e No

e Other [specify]

Check all that apply: Have you ever taken a Python pro-
gramming class?

e at an undergraduate level
e at a graduate level

e via online learning

e via professional training
e another way [specify]

e no, but I took a class that had Python as one major
component or module

® NO

How many total Python classes have you taken? [input a
number]

When did you last take a Python class [input a year]

Do you have experience programming in Python outside of
school?

e Professionally (you got paid to do it)
As a hobby

e No

Other [specify]

For how many years have you been programming in Python?
[number]

How many Python projects have you worked on in the past?
[number|

When did you last work on a Python project? [year]

For how many years have you been programming in general
(not just in Python)? [number]

How did you primarily learn to program? (Choose one)
e Self-taught

e In a university / as part of a degree
e In an online learning program
e In a professional certification program

On the job

e Other [specify]
What is your gender?

e Male
e Female
e Other

e Prefer not to answer

What is your age? [number]

Are you currently a student?

e Undergraduate

e Graduate

e Professional certification program
e Other [specify]

e Not a student

Are you currently employed at a job where programming is
a critical part of your job responsibility? [yes/no]

What country did you (primarily) grow up in? [list of coun-
tries]

What is your native language (mother tongue)? [list of lan-
guages|

B. GITHUB DEMOGRAPHICS

Table 8 compares demographics for invited users vs. partic-
ipants.

C. INSTALLED PYTHON LIBRARIES
Table 9 lists the Python libraries we pre-installed in the

study infrastructure.

94 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

Invited Valid - Pros Valid - Students Valid - Both Valid - Neither
Hireable 20.5% 19.4% 40.0% 30.6% 23.5%
Company listed 39.4% 43.4% 30.0% 38.9% 17.6%
URL to blog 48.0% 47.3% 40.0% 63.9% 58.8%
Biography added 14.1% 21.7% 20.0% 16.7% 29.4%
Location provided 62.0% 69.8% 50.0% 69.4% 29.4%
GitHub profile creation (days ago, median) 2158 2148 1712 2101 2191
GitHub profile last update (days ago, median) 22 20 23 18 14
Minimal/Maximal age — 18 / 54 19 / 37 19 / 43 24 / 81
Average age (Std) — 32.9 (6.7) 25.3 (5.2) 27.5 (4.7) 35.2 (12.7)
More than 2 years programming experience — 99.5% 100.0% 100.0% 100.0%
More than 2 years Python experience — 92.5% 85.7% 81.2% 88.7%
Security background — 6.5% 4.8% 5.7% 6.2%

Male/Female!

96.5% / 1.5%

100.0% / 0.0%

94.3% / 5.7%

96.9% / 0.0%

! the remainder either answered "other” or prefer not to disclose their gender.

Table 8: GitHub demographics for invited users vs. our valid participants.

Library Version Library Version
apsw 3.8.11.1.post1 ndg-httpsclient 0.4.0
backports-abc 0.5 notebook 4.2.3
backports.shutil-get-terminal-size 1.0.0 passlib 1.6.5
berypt 2.0.0 pathlib2 2.1.0
blinker 1.3 pexpect 4.2.1
certifi 2016.9.26 pickleshare 0.7.4
cffi 1.9.1 prompt-toolkit 1.0.9
chardet 2.3.0 ptyprocess 0.5.1
configparser 3.5.0 pyasnl 0.1.9
cryptography 1.2.3 pycparser 2.17
cryptography-vectors 1.2.3 pycrypto 2.6.1
decorator 4.0.10 pycryptopp 0.6.0.12...
ecdsa 0.13 Pygments 2.1.3
entrypoints 0.2.2 pyinotify 0.9.6
enum34 1.1.6 PyNaCl 1.0.1
file-encryptor 0.2.9 pyOpenSSL 0.15.1
Flask 0.10.1 pysodium 0.6.9.1
flufl.password 1.3 pysqlite 2.7.0
functools32 3.2.3.post2 python-geohash 0.8.3
idna 2.0 python-keyczar 0.715
ipaddress 1.0.16 python-mhash 1.4
ipykernel 4.5.2 pyzmq 16.0.2
ipython 5.1.0 gtconsole 4.2.1
ipython-genutils 0.1.0 requests 2.9.1
ipywidgets 5.2.2 simplegeneric 0.8.1
itsdangerous 0.24 singledispatch 3.4.0.3
Jinja2 2.8 six 1.10.0
jsonschema 2.5.1 smbpasswd 1.0.1
jupyter 1.0.0 ssdeep 3.1
jupyter-client 4.4.0 terminado 0.6
jupyter-console 5.0.0 tlsh 0.2.0
jupyter-core 4.2.0 tornado 4.4.2
M2Crypto 0.22.6rc4 traitlets 4.3.1
m2ext 0.1 typing 3.5.3.0
macaron 0.3.1 urllib3 1.13.1
MarkupSafe 0.23 wewidth 0.1.7
mistune 0.7.3 Werkzeug 0.10.4
nbconvert 4.2.0 widgetsnbextension 1.2.6
nbformat 4.1.0 withsqlite 0.1

Table 9: Pre-installed libraries.

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 95

