
Pushed by Accident: A Mixed-Methods Study on Strategies
of Handling Secrets in Source Code Repositories

Alexander Krause C Jan H. Klemmer ∗ Nicolas Huaman ∗ Dominik WermkeC

Yasemin Acar †, ‡ Sascha Fahl C

C CISPA Helmholtz Center for Information Security, Germany,
{alexander.krause,dominik.wermke,sascha.fahl}@cispa.de

∗Leibniz University Hannover, Germany, {klemmer,huaman}@sec.uni-hannover.de
†Paderborn University, Germany, yasemin.acar@uni-paderborn.de

‡The George Washington University, USA

Abstract
Version control systems for source code, such as Git, are key
tools in modern software development. Many developers use
services like GitHub or GitLab for collaborative software de-
velopment. Many software projects include code secrets such
as API keys or passwords that need to be managed securely.
Previous research and blog posts found that developers strug-
gle with secure code secret management and accidentally
leaked code secrets to public Git repositories. Leaking code
secrets to the public can have disastrous consequences, such
as abusing services and systems or making sensitive user data
available to attackers. In a mixed-methods study, we surveyed
109 developers with version control system experience. Addi-
tionally, we conducted 14 in-depth semi-structured interviews
with developers who experienced secret leakage in the past.
30.3% of our participants encountered code secret leaks in the
past. Most of them face several challenges with secret leakage
prevention and remediation. Based on our findings, we dis-
cuss challenges, such as estimating the risks of leaked secrets,
and the needs of developers in remediating and preventing
code secret leaks, such as low adoption requirements. We
conclude with recommendations for developers and source
code platform providers to reduce the risk of secret leakage.

1 Introduction

Version control systems (VCSs) are an essential technology
for collaborative software development. Git [1], a fundamen-
tal tool to orchestrate collaborative development, has been
voted as the most common tool in the recent Stack Overflow
Developer Survey [2] with 93.4% of participants specifying
to use this tool in their development workflow. Git-based
code repository platforms (e. g., GitHub [3] and GitLab [4])
aim to ease sharing, reviewing, and contributing to software
projects. In modern development pipelines, software is com-
monly directly built, tested, and deployed within and from
these code repositories. To deploy software on server infras-
tructure, automate interactions with third-party services, or

handle authentication, developers need to provide secrets, e. g.,
credentials, authentication tokens, or secret encryption keys.
However, these secrets must be protected from being leaked
accidentally into the public codebase. Unfortunately, this is no
straightforward task. Recent work by Meli et al. [5] found that
on GitHub, the most popular code sharing platform1, thou-
sands of automatically detectable secrets are leaked daily.

A leaked secret can have a significant impact depending on
the type of secret and how long it takes for the secret owner to
revoke it after noticing its leak. In some cases, a leak can be
highly critical, as in the case of Toyota: a hard-coded creden-
tial for accessing a data server was publicly pushed to GitHub
in 2017. It allowed attackers to control the Toyota T-Connect
accounts for 296,019 customers [7]. T-Connect provides fea-
tures like remote starting, in-car Wi-Fi, digital key access, full
control over dashboard-provided metrics, and a direct line to
the My Toyota service app. After more than five years, Toyota
invalidated the key. Such a long time could mean multiple
malicious actors have already gained access. GitHub recently
leaked a private SSH host key of their production Git servers
in a public repository and replaced them to prevent abuse.
This incident illustrates the complexity of secret management,
even for large companies experienced with code secrets and
public source code repositories [8].

There is anecdotal knowledge [9–12] on secret leaks
through source code repositories. However, there has been
little prior research trying to understand better the reasons
for and experiences with code secret leakage in source code
repositories. To address this gap, to the best of our knowledge
we are the first to conduct a mixed-methods study, includ-
ing an online survey and semi-structured in-depth interviews
with experienced developers. We investigate the following
research questions:
RQ1. How widespread is code secret leakage among develop-
ers? Leaking secrets and access tokens in source code poses
a potentially serious security threat. We asked 109 developers
how often they encountered secret leaks in the past.

1According to the Tranco list [6] generated on May 25, 2023, available at
https://tranco-list.eu/list/JX43Y.

https://orcid.org/0000-0003-2993-2568
https://orcid.org/0000-0002-6994-7206
https://orcid.org/0000-0003-2733-5073
https://orcid.org/0000-0001-7167-7383
https://orcid.org/0000-0002-5644-3316
mailto:alexander.krause@cispa.de
mailto:dominik.wermke@cispa.de
mailto:sascha.fahl@cispa.de
mailto:klemmer@sec.uni-hannover.de
mailto:stransky@sec.uni-hannover.de
mailto:yasemin.acar@uni-paderborn.de
https://tranco-list.eu/list/JX43Y

RQ2. What are secret leakage prevention approaches, and
what are developers experiences? Depending on the scenario
and context, prevention approaches can differ widely. We
surveyed and interviewed developers to reveal prevention
approaches and the experiences, challenges, and needs that
developers have when using them.

RQ3. What are developers’ experiences with code secret
leakage incidents? Little is known about developers’ experi-
ences when remediating code secret leaks. We interviewed
developers on their latest and most impactful secret leaks to
learn from their experiences, how they recognized a leak, and
their consequences.

RQ4. What are developers’ experiences with code secret re-
mediation techniques and tools? Remediating code secret
leakage can be challenging. We examine deployed reme-
diation approaches, developers’ experiences with these ap-
proaches, and their requirements for approaches.

Overall, we conducted a survey with 50 freelancers from
Upwork and 59 developers from GitHub. For in-depth insights
in developers’ experiences with code secret leakage incidents
and the approaches they use to prevent and remediate leaks,
we interviewed another 14 developers who experienced code
secret leakage. We make the following key contributions:

Identifying 18 Secret Leakage Prevention and Remedia-
tion Approaches. We present survey results with freelancers
and GitHub developers, investigating their approaches and
experiences with code secret prevention and remediation (Sec-
tion 3.1). We discovered 18 approaches to prevent and reme-
diate code secret leakage (Table 3). 30.3% of our participants
reported first-hand experience with secret leakage in their
projects.

Identifying Challenges Developers Face with Secret Leak-
age Prevention and Remediation Approaches. In addition
to the survey, we interviewed GitHub developers who experi-
enced code secret leakage to gather more qualitative insights
(Section 3.2). We report on how they detected the leaks, their
experiences with code secret leak incidents, their approaches
to preventing leaks, and their techniques and tools for secret
leakage remediation. We identified several challenges with
common remediation and prevention approaches and motiva-
tions to use them.

Providing Recommendations to Reduce the Risk of Secret
Leakage. Based on our findings, we provide recommenda-
tions for future research, software developers, and collabo-
rative source code platforms to prevent and remediate code
secret leakage in Section 6.

Providing a Full Replication Package. To support future
research, a full replication package is available in line with
the effort to support replication of our work, containing all
study materials in the Availability section (after Section 7).

2 Related Work

We present and discuss related work in two key areas: previous
research on secret leakage in source code repositories and
developers’ secure development approaches and practices.

2.1 Secret Leakage in Code Repositories
In recent years, researchers made efforts to measure secret
leakage in source code repositories. In addition, we discuss
secret detection and methods to improve its accuracy.
Measurement Studies. Sinha et al. discussed different ap-
proaches on how to detect, prevent, and fix code secret leakage
in source code repositories [13]. In 2019, Meli et al. presented
a large-scale measurement study on secret leakage in public
GitHub repositories, finding more than 100,000 repositories
with leaked secrets. They demonstrated and evaluated ap-
proaches to detect secrets on GitHub. The authors examined
potential root causes, including the developer experience and
practice of storing secret information in repositories [5].
Secret Leakage Detection. Secret scanners produce a high
rate of false-positive results, which is a major problem be-
cause developers have to review them manually. Meli et al.
used past secret detection strategies; while they avoided high
false-positive results. They combined multiple methods to
detect potential secrets and secret evaluation [5]. However,
automatic detection of secret leaks can be challenging. In
2020, Saha et al. applied machine learning to reduce the false-
positive rate of secret scanners [14]. Similarly, Lounici et
al. developed and evaluated machine learning classifiers to
reduce false-positives [15]. Recently, Kall and Trabelsi pro-
posed and evaluated an approach to improve the detection of
leaked credentials in source code repositories [16]. In 2022,
Feng et al. developed an automated approach to effectively
detect password leakage from public repositories [17]. In
2022, Rahman et al. investigated human factors on code se-
cret leakage detection tool warnings [18]. In 2022, Basak et
al. conducted a gray literature review to identify developer
and organizational practices [19].

The previous research on code secret leakage focused on
assessing its prevalence and identifying code secret leaks after
an incident occurred. We investigate developers’ experiences
with code secret leakage incidents and explore their strate-
gies for preventing and remediating them by conducting two
developer studies.

2.2 Exploring Secure Development Ap-
proaches and Practices

Researchers have extensively studied secure software devel-
opment practices. This section describes these research ef-
forts dedicated to improving secure development methodolo-
gies, offering insights and guidance to empower developers
in achieving secure software.

Assal et al. interviewed 13 developers to investigate their
real-life software security practices during each stage of
the development lifecycle. Real-life security practices differ
markedly from best practices identified in the literature [20].
Assal et al. continued by conducting an online survey with
123 software developers to explore the interplay between de-
velopers and software security processes. They found that
security vulnerabilities often result from a lack of organi-
zational or process support [21]. In 2017, Haney et al. sur-
veyed 121 representatives from organizations that work in
cryptographic development. They characterized the crypto-
graphic practices, types of resources, and standards used by
cryptographic developers. They found that participants used
cryptography for a variety of purposes, with the majority rely-
ing on generally accepted, standards-based implementations
as guides [22]. In 2018, the researchers conducted 21 in-
depth interviews with highly experienced individuals from
organizations that employ cryptographic implementations to
gain a more profound understanding of their cryptographic
development practices. They demonstrate a strong organi-
zational security culture that guides the careful selection of
resources and informs formal, rigorous development and test-
ing practices [23]. In 2020, Votipka et al. qualitatively ana-
lyzed BIBIFI [24] submissions on how and why programmers
make security errors. They found that most vulnerabilities
result from misconceptions. Furthermore, they suggest APIs
should be simpler and more precisely documented, including
multiple use cases and edge cases [25]. In 2020, Palombo
et al. presented an ethnographic study of secure software
development processes in a software company finding that
sometimes vulnerabilities were ignored or even consciously
introduced to fix other issues [26]. In 2022, Wermke et al. in-
terviewed 27 open source developers to investigate their secu-
rity and trust practices. They found that open source projects
are highly diverse in deployed security measures, trust pro-
cesses, and their underlying motivations [27]. Naiakshina et
al. qualitatively analyzed security problems when implement-
ing secure password storage. The authors found conflicting
advice to be an obstacle that developers struggle with [28].
Lopez et al. analyzed security-related conversations on Stack
Overflow and found that developers use online environments
to actively connect, exchange information, and provide as-
sistance, despite concerns about their reliability as security
information sources. [29]. Recently, Fischer et al. conducted
a study analyzing the effect of Google Search on security
in software development. Besides insecure resources among
search results, they demonstrated that re-ranking search re-
sults significantly improved security.

While previous research explored secure development prac-
tices and approaches in general, in companies, and open
source communities, focusing on security vulnerabilities and
implementations, we extend this by focusing on the practices
developers use to prevent and remediate code secret leakage
at code repository platforms.

1. Online Developer Survey

Source Code Management

Experience with Secret
Information

Threat Model for Secret
Information

Secret Leakage Remediation

Secret Leakage Prevention
Approaches

2. Survey Analysis

Identify Secret Leakage
Remediation & Prevention

Approaches

Demographics

n=109 developers (50 from
Upwork, 59 from GitHub)

Widespread of Secret Leakage

Analysis of Free Text Answers

3. Developer Interviews

Code Secret Leakage
Experience

Secret Leakage Remediation
Approaches

Secret Leakage Prevention
Approaches

Intro

4. Interview Analysis

n=14 developers who
experienced secret leakage

Identify Developers' Problems,
Challenges, and Needs with

Secret Leakage Remediation &
Prevention Approaches using

Iterative Open Coding

Pre-Survey for Demographics

5. Results

6. Discussion &
Recommendations

Outro

Figure 1: Study overview, showing methodology in blue and
the content of the survey/interview sections in yellow.

3 Methodology

In this section, we explain the methodology of our studies. An
overview is depicted in Figure 1. After a detailed description
of the online survey with Upwork and GitHub developers, we
describe our interview study with developers from GitHub, in
which we gained further qualitative insights into code secret
incidents and their remediation and prevention approaches.

3.1 Online Survey with Developers

Below, we provide details on the approach and structure of the
survey which we conducted with 109 developers. We detail
the analysis of both qualitative and quantitative data points.

3.1.1 Survey Procedure

Between September 6 and October 26, 2021, we conducted
an online survey with 50 freelancers from Upwork and 59 de-
velopers from GitHub. We used Qualtrics [30] to provide the
survey and collect the respondent’s data.
Questionnaire Development. First, we conducted an ex-
ploratory analysis of online guides, reviewing 100 web pages

for an impression of what kind of information for code se-
cret leakage prevention and remediation is provided online
(cf. Appendix A). We developed our questionnaire based on
this exploratory analysis, previous research (cf. Section 2),
and the research questions. In addition, we established addi-
tional areas of interest for our survey based on participants’
input during pre-testing. In both our survey and interview
studies, we provided explanations for the terms code secret,
code secret leakage, and code secret handling approaches for
a shared understanding of the terms with participants. These
explanations emerged from the exploratory analysis and were
validated for understanding in survey pilots.
Piloting. Before conducting the survey, we piloted our ques-
tionnaire with 11 participants. First, we conducted cognitive
walkthroughs [31] with four usable security researchers. Sub-
sequently, seven participants completed the survey unsuper-
vised, with an additional feedback text box on each page of
the questionnaire. The results were used to verify and improve
survey clarity and flow.

3.1.2 Recruitment and Inclusion Criteria

We used two different recruitment strategies to obtain a di-
verse sample of developers: We recruited Upwork freelancers
and GitHub developers. We include the recruitment material
in our replication package (cf. Availability section).
Upwork. On the freelancer platform Upwork [32], we pub-
lished several identical postings for developers from Septem-
ber 8 through October 23, 2021. Freelancers applied by writ-
ing a short application. This included answering screening
questions, which we used to accept only participants that
met our inclusion criteria. We accepted freelancers who had
worked with VCSs and related platforms to manage their
source code. They were also required to have collaborated
with other people in the past. These criteria ensured they po-
tentially had to handle secrets on source code platforms. We
compensated the freelancers with $25 to offer a competitive
reward ($1/minute), so that professionals would also have an
incentive to participate [33].
GitHub. Following security research from 2021 and
2022 [34, 35], we implemented the following procedure to
recruit developers from GitHub. From October 18 to Octo-
ber 20, 2021, we invited 5,310 GitHub users, which had an
activity on September 1, 2021. We also verified that all re-
cruited developers were also active contributors in general by
manually analyzing their GitHub commits. We only invited
developers who had published their contact email addresses
on their profiles, and stopped inviting developers once we
reached saturation. We refrained from contacting develop-
ers who did not want to be contacted, contacted developers
only once, and offered to add them to an ignore list2. We
received no complaints from any of the invited developers
(cf. Section 3.4).

21.4% of the users we invited made use of this option.

3.1.3 Survey Structure

Below, we outline topics and questions covered in the ques-
tionnaire (cf. Figure 1). The full survey including the consent
form can be found in our replication package (cf. Availability
section).
Source Code Management. We asked questions regarding
what types of source code repositories participants used (e. g.,
local only, remote platform, self- or third-party-hosted), and
about usage of different VCSs and platforms to gather a gen-
eral understanding of respondents source code management.
Experience with Secret Information. This block of ques-
tions aims to understand what type of different secrets par-
ticipants encountered. We asked these questions for all past
projects and the most recent project.
Threat Model for Secret Information. To understand partic-
ipants’ threat model, we asked participants which other stake-
holders had access to which secret information and who made
this decision in their most recent project. We followed up
with brief definitions of code secret and code secret leakage
to ensure a shared understanding for the following questions.
This question block concludes with two Likert scale questions
regarding the perceived prevalence of code secret leakage and
potential consequences.
Secret Leakage Remediation. Next, we asked questions
regarding whether the participants experienced code secret
leakage themselves or knew someone who did. To investi-
gate current secret leakage remediation practices, participants
were prompted to describe (based on the previous question’s
answer) how they remediated code secret leakage themselves,
how others did, or how they hypothetically would.
Code Secret Handling Approaches. Another important as-
pect, covered in this question block, are approaches to prevent
code secret leakage in general. Again, we defined code se-
cret handling approach (all approaches to avoid code secret
leakage). To gather prevalent practices, we asked participants
in free text questions which approaches they have heard of,
which ones they used, and why. Additionally, we asked par-
ticipants for any issues they had, with which approaches, why
they failed with an approach, and what they wanted to use an
approach for. Finally, we asked whether and how the partici-
pants helped co-workers handle secrets.
Demographics. The concluding block was about demograph-
ics. This included standard questions (e. g., age, gender, coun-
try, education, employment status), but also specialized ques-
tions to investigate the development (e. g., years in develop-
ment, number of projects) and security experience.

3.1.4 Analysis

Our analysis is a mix of quantitative and qualitative evalu-
ation. We report various counts and percentages of single-
and multiple-choice questions in text and figures in the sur-
vey results (cf. Section 4). For the free-text questions, two

researchers used an iterative open-coding approach to ex-
tract the used approaches on code secret prevention and re-
mediation (Q11–15) [36–38]. To prevent mislabeling, the
researchers first coded ten answers together and discussed
problematic codes for each question. Subsequently, two re-
searchers coded the answers independently, followed by a
third researcher independently reviewing the coding. Finally,
they resolved any coding conflicts in a consensus discussion
or introduced new codes if necessary [39]. All previous an-
swers were re-coded if new codes were introduced.

3.2 Interviews with Developers
To enrich and deepen the survey insights, we decided to com-
plement those with qualitative insights from semi-structured
interviews (n = 14). The interview results cover the reasons,
experiences, and processes for the prevention and remediation
approaches we collected in our survey (cf. Section 5). We
reached saturation within the high-level codes of our code-
book. The average interview duration was 32 minutes (me-
dian: 32.5 minutes).

3.2.1 Interview Procedure

All 14 interviews were conducted in June and July 2022. We
utilized a setup with two interviewers. A main interviewer
held the conversation with the interviewee and asked the ques-
tions according to the interview guide. A so-called shadow
interviewer was present to listen and note what questions were
asked, and to make sure none were forgotten. At the end of
the interview, the shadow interviewer also had the chance to
ask questions to follow up on interesting aspects that emerged.
All interviews were conducted in English and remotely via
a GDPR-compliant conference tool. We recorded each inter-
view to create a transcript later on, after which we destroyed
the recordings. All transcripts have been manually checked
and corrected by us for possible errors.
Pre-Questionnaire. Before the actual interview, each partic-
ipant had to fill a short pre-questionnaire. This had multiple
purposes. (1) We screened participants by only accepting
those who experienced secret leakage. (2) We explained the
purpose of the study and obtained consent for participation,
our data handling, and recording. (3) Finally, we asked several
demographics and background questions, which also helped
the interviewer to prepare for the interview.
Piloting. We iteratively tested and improved the initial ver-
sion of the interview guide. This mainly included three cogni-
tive walkthroughs with usable security researchers. We used
this interview simulations to obtain feedback on question
clarity, completeness, and to generally improve the interview
guide with the interviewed researchers’ experience. After
each interview, we tweaked question clarity to ensure a good
interview flow. This was followed by two pilot interviews
with developers from Upwork.

3.2.2 Recruitment and Inclusion Criteria

As the goal of this study is to investigate secret leakage pre-
vention as well as remediation, we decided to only interview
developers who experienced secret leakage and therefore can
report on remediation and past incidents. This was the only el-
igibility criteria to participate in an interview. Two developers
from Upwork who also participated in our survey and stated
that they experienced code secret leakage were invited and
compensated with $60. Apart from the two piloting intervie-
wees with Upwork users, we recruited the remaining twelve
participants from GitHub – following the same approach as
for the online survey (cf. Section 3.1.2). Due to institutional
restrictions, we could not compensate GitHub interview par-
ticipants directly. Instead, we could offer these participants to
sponsor a GitHub project of their choice with $60.

3.2.3 Interview Structure and Interview Guide

In the following, we describe the interview structure and
questions. We outline all sections, each containing top-level
questions and corresponding follow-up questions. The full
interview guide can be found in Appendix B.

Introduction. Each interview started with greeting the partic-
ipant, explaining the interview’s purpose and procedure, and
obtaining consent from the participants. We underlined that
we are only interested in personal opinions and experiences
and not judging their case of secret leakage. The participants
could skip questions anytime.

Code Secrets. In the first section, we talked about code se-
crets and established a shared understanding of what a code
secret is. Moreover, we asked participants about their broader
experiences with code secrets. This included where they came
into touch with code secrets and their experiences regarding
sensitivity, and code secret access.

Secret Leakage and Remediation Approaches. We contin-
ued with the code secret leakage incident that the participant
had experienced. First, we established a uniform understand-
ing of what a secret leak is. Then, we queried participants
about their most impactful or latest (depending on what they
remember best) secret leak. To get detailed insights, we asked
for reasons why the leak occurred, consequences, and changes
to secret handling due to the incident. Related to the leak, we
asked for its remediation, including experiences, and chal-
lenges, involved individuals/teams, and consulted resources.

Secret Leakage Prevention Approaches. The third section
was about preventive measures against secret leakage. We
asked questions on approaches that participants have used, in-
cluding their experiences, understanding of the approach, and
any challenges. We also asked for approaches they tried to use
but failed with and the reason for this, as well as approaches
they know of but do not use. If a participant had not taken any
prevention approach, we instead asked for potential reasons.

The section concludes with an open question on wishes and
improvements for future prevention approaches.

Outro & Debriefing. After we asked all the questions, we
held a debriefing with the participants to clarify any remaining
questions, to give participants an opportunity to add some-
thing we might not have specifically asked for, and to gather
feedback for the interview.

3.2.4 Analysis and Coding

We used an iterative open-coding approach to analyze all
interview transcripts [36–38]. First, two researchers devel-
oped an initial codebook based on their interview impressions
and the interview guide. Afterward, the same two researchers
coded the interviews in multiple rounds. After each iteration,
they resolved conflicts by consensus discussion or by intro-
ducing new sub-codes. We continued iterative coding until
no new codes and themes emerged [40, 41]. We do not report
inter-coder agreement. We resolved each conflict immediately
when it emerged (resulting in a hypothetical final agreement
of 100%) [27, 39, 42–44]. The final codebook is part of our
replication package (cf. Availability section).

3.3 Participant Demographics

We hired 109 respondents for the survey, and recruited 14 par-
ticipants for the interviews. Overall, our survey respondents
and interview participants were predominantly male, with
roughly 10% female, and were about 30 years old on average.
Country-wise, we have a highly diverse sample of survey re-
spondents from more than 33 distinct countries, including the
U.S., India, and Germany as the top three, as well as Canada,
the UK, Russia, Pakistan, Portugal, the Netherlands, Mexico,
Australia, Egypt, Brazil, and Indonesia. Interview participants
were from nine distinct countries, including the U.S., India,
and Pakistan as the top three, as well as Canada, Belarus,
Italy, Kenya, and Brazil. While most survey respondents were
full-time (71, 65.1%) or part-time employees (11, 10.1%),
some participants reported to be self-employed/freelancers
(33, 30.3%), or students (12, 11.0%). Overall, the respondents
and participants were highly experienced, with the majority
of survey respondents (59, 54.1%) having developed software
for more than five years. About 85% of the survey respon-
dents and 95% of the interview participants said they taught
themselves how to program, often in addition to other ways of
learning, e. g., at college or university, on the job, or in online
classes. In total, the demographics in terms of gender, age, top
three countries, and education are comparable to those of the
2022 Stack Overflow developer survey [2]. Table 1 provides
the detailed overview of survey respondents’ and interview
participants’ demographics.

Table 1: Selected participant demographics from both the
survey and interviews. We omit “Other” and “Prefer not to
disclose” answers for space reasons.

Survey Interviews
Upwork GitHub Combined

Participants:
Started 52 101 153 n/a
Finished 51 59 110 n/a
Valid/Total (n =) 50 59 109 14

Gender:
Male 86.0% 88.1% 87.2% 92.9%
Female 10.0% 1.7% 5.5% 0.0%
Non-Binary 0.0% 6.8% 3.7% 7.1%

Age [years]:
Median 29.0 33.0 30.0 28.0
Mean 31.3 34.9 33.2 32.1

Country of Residence:
U.S. 2.0% 32.2% 18.3% 21.4%
India 20.0% 3.4% 11.0% 21.4%
Germany 0.0% 18.6% 10.1% 0.0%
Pakistan 14.0% 3.4% 8.3% 14.3%
Other 60.0% 40.7% 49.5% 42.9%

Development/Programming Education:1

Self-taught 92.0% 94.9% 93.6% 85.7%
College/University 54.0% 62.7% 58.7% 71.4%
On-the-job training 72.0% 42.4% 56.0% 57.1%
Online class 60.0% 28.8% 43.1% 35.7%
Coding camp 18.0% 8.5% 12.8% 0.0%

1 Multiple answers allowed; may not sum to 100%.

3.4 Ethics & Data Protection

The research in this paper was approved by one of our institu-
tions’ ethical review board (ERB) (IRB equivalent). Overall,
we adhere to the principles for ethical research outlined in
the Menlo Report [45]. In addition, we handle all data accord-
ing to the strict General Data Protection Regulation (GDPR)
laws of the European Union (EU). Furthermore, all data is
stored in de-identified form, so there is no link between the
participants’ survey or interview answers and their identity.
Before participating in our studies, we encouraged potential
participants to familiarize themselves with consent and data
handling information on the study website. We obtained in-
formed consent from all participants for participation in the
study and having their interview’s audio recorded and tran-
scribed. Before, during, and after the interview, (potential)
participants were able to contact us at listed contact addresses
for any questions or additional information. Reporting secu-
rity incidents such as leaked secrets might be very sensitive
for participants. Therefore, we always offered the option to
skip a question or select “Prefer not to answer”.

Recruiting developers from GitHub has been common in
the past [27, 46, 47]. However, a change in GitHub’s terms
of service prohibits contacting their users for research pur-
poses [48, § 7]. Therefore, we suggest researchers avoid this
recruitment procedure in the future.

We compensated all Upworkers who completed the sur-
vey with $25. Due to institutional restrictions, we could not
compensate survey participants recruited from GitHub. When
conducting the interview study later, we solved this issue and

could offer compensation to interview participants recruited
from GitHub.

3.5 Limitations
Our work includes some limitations typical for these survey
and interview studies and should be interpreted in context. In
general, self-report studies may suffer from several biases, in-
cluding over- and under-reporting, sample bias, self-selection
bias, and social desirability bias [46, 49–52]. Developers who
agreed to speak with us could be more (or less) security-
conscious than those who declined.

Furthermore, focusing our recruitment on Upwork and
GitHub participants might introduce a sampling bias by
excluding developers active on other platforms. We chose
GitHub due to its high popularity compared to other plat-
forms like GitLab. Kaur et al. compared different freelancer
recruitment channels for studies with developers [53], and
Upwork appears to be the best choice for our study. It offers
recruitment for freelancers worldwide, allowing us to gather
a more complete picture than country-specific platforms. Our
demographics also reflect this diversity (Section 3.3).

4 Survey on Secret Management

In this section, we report on the findings based on all 109 valid
survey responses (153 respondents started, one respondent
tried to scam us by copying answers from websites). This
includes an overview of 18 prevention and remediation ap-
proaches that survey respondents used. We include survey
respondents’ quotes as transcribed, with minor grammatical
corrections and omissions marked by brackets (“[. . .]”). Sur-
vey respondents are numbered with a leading S (e. g., S4).
Below, we report on the most relevant and interesting survey
questions and responses. A full list of counts and codes for
all questions is provided as part of our replication package
(cf. Availability section). For the interview study that we con-
ducted with developers who experienced secret leakage, we
report on their experiences in Section 5.

4.1 Version Control Systems and Platforms
In the survey, we asked respondents for the different VCSs and
corresponding platforms they used within the last 12 months.
All 109 respondents reported using Git, which was by far
the most popular VCS. In addition to Git, 12 respondents
(11.0%) used Subversion, being the second most popular VCS.
Others mentioned Concurrent Versions System (CVS) (5,
4.6%), Microsoft Team Foundation Version Control (TFVC)
(4, 3.7%), Perforce (2, 1.8%), and Mercurial (2, 1.8%).

Closely related to the high prevalence of Git, both GitHub
and GitLab were the platforms most often reported by 99 sur-
vey respondents (90.8%) and 48 respondents (44.0%), re-
spectively. Besides these public services mainly known for

0 20 40 60 80 100
Count (n = 109)

GitHub 99
GitLab 48

Bitbucket 36
Azure DevOps Server 18

AWS CodeCommit 12
Other  8

Sourceforge  3
Gitea  3

Figure 2: Platform usage reported by the survey respondents.
We allowed multiple answers.

0 5 10 15 20 25 30 35
Count (n = 109)

API Keys

Login Credentials

Auth/Access Tokens

Personal Cryptographic Keys

Service Passwords

CI/CD Keys

Other

All past projects Most recent project

Figure 3: Secret usage reported by the survey respondents.
We allowed multiple answers.

open-source software development, respondents reported ser-
vices targeted at companies that offer commercial features
for private source code repositories. This included cloud so-
lutions like Microsoft’s Azure DevOps Server (18, 16.5%),
Amazon Web Services (AWS) CodeCommit (12, 11.0%), and
Google Cloud (GC) Source Repositories (2, 1.8%), but also
self-hosted solutions like Gitea (3, 2.8%). One respondent
reported to use general file synchronization solutions instead
of specialized services or hosting platforms. Figure 2 depicts
system and service usage in detail.

Overall, hosting source code repositories using a third-party
service or provider is the most prevalent for both public (95,
87.2%) or private (77, 70.6%) repositories. Contrary, self-
hosting repositories were reported less than half as often and
are more prevalent for private repositories (39, 35.8%) than
for public ones (26, 23.9%).

4.2 Secrets, Access, and Threat Model

Regarding the types of secret information, our respondents
reported that they predominantly handled login credentials
(35, 32.1%), application programming interface (API) keys
(35, 32.1%), and authentication and access tokens (33, 30.3%)
within their past projects. This is similar for their most recent
projects, as shown in Figure 3. Respondents also said that
they encountered cryptographic keys, either for personal or
server use, as well as special service passwords or keys used
in CI/CD pipelines.

Regarding secret access and sharing, the respondents re-

Table 2: Summary of which groups of persons had access
to secrets (besides the participants themselves); percentages
normalized to 100% for all groups of each access level.

Other team

members

Management
Members of

other teams

Public

Had access 156 (70,5%) 79 (35.7%) 34 (15.8%) 8 (3.6%)
Had no access 49 (22.2%) 116 (52.5%) 170 (76.9%) 203 (91.9%)
I don’t know 2 (0.9%) 10 (45.2%) 4 (1.8%) 3 (1.4%)
Prefer not to disclose 14 (6.3%) 16 (7.2) 12 (5.4%) 7 (3.2%)

0 5 10 15 20 25
Groups with access [%]

Service Passwords 22

API Keys 45

Auth/Access Tokens 52

CI/CD Keys 20

Login Credentials 51

Personal Cryptographic Keys 30

Team members
Management

Members of other teams
Public

Figure 4: Respondents’ reports on who had access to which
secret information in their most recent project. Not consid-
ering “I don’t know” and “Prefer not to disclose” answers;
normalized to 100% for all groups of each secret type.

ported that other members within the same team had access
171 times. Most commonly, these were the management (90)
and members of other teams (42). The general public had
access in only eight cases. Conversely, the public had no ac-
cess in the majority of cases, which can be inferred from
Table 2 among other details. Most respondents shared se-
crets with their team members, some with their management,
only a few with other teams, or with the public (cf. Figure 4).
Developers shared passwords for services, API keys, and au-
thentication/access tokens more often than personal keys.

Access control for secrets was most often configured by
the respondents themselves, as 44 respondents (40.4%) re-
ported. Sporadically, these decisions were jointly made (15,
13.8%), or at least with some involvement of the respondent
(18, 16.5%). In those cases, decisions were made with ar-
chitects, team leaders, management, the whole development
team, or a security team.

4.3 Code Secret Leakage Incidents
While a third of all survey respondents (33, 30.3%) reported
a code secret leakage in the past, only a few participants pro-
vided further information in the corresponding free text field.
Survey respondents mainly reported on two types of inci-

dents: secrets that were included in source code, and secrets
that were placed in dedicated files, e. g., secret files or .env
files, and had been pushed to the repo accidentally, e. g., “I
mistakenly pushed my .env file which includes all of my API
keys to the Github repository.” (S150).
Impact of Code Secret Leakage. Respondents faced various
consequences of code secret leakage. They reported on, e. g.,
delayed project schedules and service downtimes due to the
code secret leak. Furthermore, worse consequences occurred,
like the leakage of confidential data, or team members that
got fired because of the code secret leak, e. g.,

“There was a code secret leakage in one of the projects
that I was part of. It led [. . .] to the loss of confiden-
tial information to the public. The project team leader
had to cut every team member of the project because,
[in his opinion, one team member was involved in the
leakage.]”— S49

4.4 Prevention and Remediation Approaches
Based on the survey answers, we found 18 approaches to
prevent and remediate code secret leakage that participants
had used before, or at least knew about. Table 3 provides an
overview of both the nine prevention and nine remediation
approaches, and their prevalence rates. Each approach is a
theme that we extracted from all survey responses.

While most respondents reported the combined usage of
multiple approaches (e. g., externalizing secrets and keeping
them out of repositories, or encrypting them within the repos-
itories), some approaches are designed for specific use cases
and occurred less frequently (e. g., code or secret reviews).
This applies to both prevention and remediation approaches.
Approaches were either technical or organizational.
Prevention Approaches. The most reported measures were
a combination of externalizing secrets (60, 55.0%), e. g., us-
ing dedicated config files or using environment variables, and
blocking secrets from the repository itself (32, 29.4%), e. g.,
by using a .gitignore file. About a quarter of the participants
(30, 27.5%) indicated to have stored secrets encrypted to pre-
vent misuse if the secrets had to stay in the repository.
Remediation Approaches. The majority of participants (59,
54.1%) reported on renewing or at least revoking a leaked
secret to prevent further misuse. In addition, they (19, 17.4%)
reported cleaning the VCS history, or removing the secret (12,
11.0%) from source code without cleaning the VCS history.

5 Interviews: Experiences with Secret Leakage

Based on the 14 developer interviews, we report in-depth
qualitative findings below. We use quantifiers to determine
which qualitative findings were more relevant or minor. They
do not serve as quantitative statistical. We include interview
participants’ quotes with minor grammatical corrections and
omissions marked by brackets (“[. . .]”). Interview participants
are numbered with a leading I (e. g., I4).

Table 3: Approaches for preventing and remediating code secret leakage as reported in the survey (n = 109).

Approach Description # %

Prevention
Externalize Secrets Separation of code secrets and committed code so that secrets are loaded at runtime, e.g., storing secrets on a central server or secret

management system, using environment variables or files [Hashicorp Vault, Azure Key Vault, AWS Vault, *Password, KeePass,
Doppler, python-decouple, GitLab CI, GitHub CI, Travis CI]*

60 55.0%

Block Secrets Prevent code secrets to be contained in code, config, or any other files or prevent including them in publicly available source code
repositories, for example, usage of .gitignore files, minimizing secret usage in general or use none, remove secrets from version
control before publishing to repository

32 29.4%

Encrypted Secrets Use encryption to store secrets securely within source code repositories [git-secret, git-crypt, SOPS, GPG, kube-seal]* 30 27.5%
Restrict access Limit the scope of entities including systems and users with access to code secrets, e.g., by user management, policies, role-based

access control
19 17.4%

Monitoring Regular scanning for code secrets and leaks both locally and remote e.g., using secrets scanners in CI/CD pipelines or pre-commit
hooks, or review which entities have/had access [SonarQube, Checkmarx, GitGuardian, AWS Cloud Trail]*

16 14.7%

Education & Awareness Raise awareness for code secret leakage and educate developers how to handle code secrets, e.g., coding guide, best practices wiki 9 8.3%
Other Miscellaneous other approaches named by participants, not limited to secret handling 8 7.3%
Rotation Use short-lived secrets, rotate them periodically [Doppler]* 6 5.5%
Code & Secret Reviews Manual code reviewing which also focus on code secrets; four or more eyes principle to approve code changes 4 3.7%

Remediation
Renew or Revoke Secret Invalidate leaked code secrets to prevent any future misuse [Doppler]* 59 54.1%
Cleanup VCS History Remove leaked secrets from VCSs whole history, e.g., by rewriting the history, clean caches, or reinitialize the whole repository

[BFG Repo Cleaner]*
19 17.4%

Analyze Leak Analysis and forensics on the code secret leak to identify root causes or how the leak was exploited, e.g., by auditing logs or
consulting security experts,

17 15.6%

Removal from Source Code Remove leaked secrets from the current code base. This doesn’t include version history, caches or similar 12 11.0%
Notify Concerned Roles Inform stakeholders affected or involved in the leak, e.g., security team, management, customers, providers, authorities 8 7.3%
Access Management Re-evaluation of access control concepts and applying more restrictive access management if needed 6 5.5%
Retract Repository Delete public repositories affected by the leak or make them private, possibly temporarily until remediation is completed 5 4.6%
Systemic Consequences Applying consequences due to the secret leak, e.g., new processes, specific education, removal of team members or clients 3 2.8%
Server Operations Actions taken to remediate secret leakage in running software, e.g., by backuping systems, or pruning and re-initializing servers 2 1.8%

* Tools our respondents used.

5.1 Secret Leakage Prevention Approaches

Interview participants used different approaches to prevent
code secret leakage. They also elaborated on several factors
on applying these measures, challenges, and lessons learned.
Most participants used approaches to block secrets from get-
ting in their repositories: half of the participants used envi-
ronment variables to avoid statements of secrets in the source
code, many used secret managers like HashiCorp Vault [54]
or AWS Parameter Store [55], and a few used .gitignore files.
A few participants reported that they educated and trained de-
velopers to raise their awareness. Moreover, a small number
of of participants reported that they use secret scanners and
also that they use separate environments for development and
production. Notably, some participants did not use prevention
approaches before encountering code secret leakage.

Factors. Participants reported on several factors that influ-
enced the choice and usage of different prevention approaches.
Most important for all participants’ satisfaction with an ap-
proach was that the approach worked well (in terms of usabil-
ity and actual code secret leakage prevention). Other than that,
approaches have to be effective, efficient, secure, and compli-
ant with company requirements. Participants reported several
factors that lead to a negative influence on the usage of pre-
vention approaches. One participant reported that they do not
rely on third parties. In consequence, they did not integrate a
third-party code secret scanner. Another participant reported,
that there were too many constraints for the approach to work:
“We are not going to use vault because it would be too many
constraints for us.” (I3). At least, one participant said, that

the integration of the approach to their infrastructure would
be too complicated.

5.1.1 Challenges

While a third of all survey respondents (33, 30.3%) reported
to have had code secret leakage in the past, only a few respon-
dents (7, 6.4%) reported that they had failed to apply a code
secret handling approach when using environment variables,
the git filter-branch command, or external tools, e. g.,
vaults. We could identify further problems with prevention
measures from the participants we interviewed.
Cost and Time Constraints. Almost all interview partici-
pants complained about time and cost requirements of adopt-
ing a code secret management tool. This included the time
it took to set up a method or educate all involved developers
about the method. It also involved adopting the method into
existing projects, often requiring refactoring work.
Documentation. Finally, documentation was one of the more
commonly cited challenges, especially “the lack of actual
documentation available [for] open source software or open
source approaches.” (I14). This required special care and
more time from developers during the setup of an approach,
while securely deploying an approach in their infrastructure,
and while using it.
Awareness and Education. The interviewees also indicated
that getting developers to work carefully and use a secret
management approach was a challenge: if a tool required too
many workflow changes, it would slow down development,
so developers try to bypass prevention approaches, e. g.,

“Someone was doing something off the books [. . .]: They
were just creating another repository [. . .] not within the
organisation, but maybe just under a personal account or
something. Those you can’t really fix with tooling, at the
end of the day those are just people problems [. . .] and
we can fix that through training [. . .][or] policy.”— I6.

Maintenance. Maintaining an approach can be challenging,
for example, having to update secret definitions in secret scan-
ners. About half of our interview participants reported that
maintenance proved to be challenging when adopting preven-
tion approaches. The biggest complaint was that maintenance
was too time-consuming and not user-friendly.

5.1.2 Lessons Learned

All in all, participants learned from their previous experiences
regarding code secret leakage prevention. Many participants
suggested using more (automated) secret scanning, e. g.,

“We need an approach to statically analyze [. . .][code for]
secret leakage. For example, we are totally missing this
kind of automation in our pipeline.”— I8.

Furthermore, a few participants used a prevention approach
because it is cheaper compared to facing a code secret leakage
incident. Moreover, a few participants stated that they would
like to know if the company’s prevention approach would
work in case of a potential leak. They felt uncomfortable
because the approach was never tested. Besides, the human
error seemed to be the most relevant factor when it comes to
code secret leakage. Therefore, some participants suggested
to focus on a better onboarding of new developers.

5.2 Secret Leakage Incidents
There are many ways to leak code secrets in VCSs. They
depend on the place of a leak, the secret type, if and how a
leak was recognized, and the potential consequences. This
section sheds light on incidents that our participants reported.
We learned that some participants experienced code secret
leakage multiple times, e. g., in the same or across different
software projects. A few participants stated that it happened
repeatedly at a high frequency. “[Code secret leakage] hap-
pens four or five times a year, I would say.” (I5).
Places of Leak. Our interview participants experienced code
secret leaks in various places. Most participants reported a
secret leak through public source code repositories, including
GitHub and GitLab. Few participants reported leaks through
private repositories, to which only a specific group of poten-
tially unauthorized users had access. One participant experi-
enced code secret leakage through the log files of the GitHub
Workflow feature [56]. Another participant reported secret
leaks on platforms such as pastebin [57] or gist [58], e. g.,

“It wasn’t like ‘I’m going to publish this on the Internet.’
They had actually copied and pasted some code to get
assistance from somebody in a gist, and the gist happened
to be public.”— I11.

Type of Leak. The type and frequency of secret leaks vastly
varied between participants. All participants reported secret
leaks through hard-coded information in source code or con-
figuration files of a project. Some interviewees experienced
leaks through accidental commits of configuration files that
included API keys, tokens, or login credentials, for example.
Other participants leaked access keys and API tokens they
used for authentication purposes in deployment infrastruc-
tures. Few participants leaked AWS tokens [59]. Finally, few
interviewees leaked passwords for databases containing sen-
sitive internal information or customer data. One participant
accidentally pushed all their project secrets to a publicly avail-
able GitHub repository, e. g.,

“[I was] pushing the commits to GitHub and when I
pushed the remote repository, I found that my [password
manager database] has gone into GitHub without me
wanting it to go to there.”— I10.

Leak Detection. The impact of code secret leaks highly de-
pends on their detection. In particular, the time span until
leaks are detected is important. Most of our participants re-
ported that GitHub notified them in case of a secret leak so
that they could respond quickly. In two cases, GitHub even
triggered the revocation of the leaked secrets.

Although GitHub notifications provide immediate feedback
in case of secret leaks, some participants reported, that they
discovered the secret leak only some weeks after the notifica-
tion. “It was probably out there for a couple of weeks. So, yes,
that was not amazing.” (I11). Furthermore, some participants
noticed their leak randomly while they did another task, e. g.,
reading the logs to debug a program error . In addition, a few
participants were informed by random people that saw their
secret in the repository, e. g., “Actually, it was someone who
saw it for me because it was really recently.” (I13). Moreover,
a participant got informed by a third-party secret scanner.
Impact. We observed two different types of consequences
caused by code secret leakage. Consequences may directly
affect the company or software team that is responsible for
the leak. However, we also saw consequences for external
stakeholders, such as clients of the developed software or the
customers of that client. Most of our participants reported,
that the secret leak caused additional workload for the team.
This included the investigation of the leak, as well as the reme-
diation process. Furthermore, some participants told us, that
their company or their team suffered from financial damage.
A few participants reported that they experienced reputational
damage to their company, e. g.,

“All these issues were there, and we had to tell our clients
that this happened, and we had to release it in that there
was a security breach [. . .].”— I11

Besides these consequences, one participant told us that their
leaked secrets got used to crypto mine on their systems. In a
few cases, external stakeholders got affected since they had
to renew all customer and client secrets to prevent misuse.

Root Causes, Access, and Threat Model. There were var-
ious reasons for code secret leakage. Most participants re-
ported that their leaks happened because developers, espe-
cially new developers that recently joined the team, were not
aware of the consequences of a leak. Furthermore, most partic-
ipants stated that they did not use any prevention approaches
before an incident happened. In summary, developers leaked
code secrets because they hard-code secrets in source code,
or they did not add secret-containing files to a .gitignore file.

Access control configurations for code secrets and the
threat model of the developers can affect the likelihood of
code secret leakage. Most participants could describe a threat
model for their use cases and included sharing secrets as a
risk. Some of them have placed special emphasis on confi-
dentiality. One participant stated that code secrets were not
critical to them at all.

Some developers granted access to secrets on request. Few
participants reported that their companies or team considered
all employees as trusted and granted them full access to all
secrets, e. g., “Really just any time you ask, you’ll just get
access to whatever you want.” (I6).

5.3 Secret Leakage Remediation

All interviewees experienced code secret leakage. Below, we
report on the developers’ experiences during the remediation
approaches, their challenges, and lessons learned. Most partic-
ipants reported to have revoked or updated the affected code
secrets after they got aware of the leakage. Some immediately
implemented remediation. They also analyzed root causes to
prevent further future leaks. Few participants remediated the
leak by taking down the repository or making the repository
private. Moreover, few reported developer education measures
on handling secrets securely. In addition, some participants
removed the leaked code secrets by rewriting git history or
deleting the secret with a new commit. Notably, a small num-
ber did neither revoke nor update leaked secrets. Participants
repeatedly reported misconceptions of how git works.

While they used several approaches, the kinds of incidents
can be various, including the consequences caused by the leak.
Depending on the leakage and the consequences, participants
chose different remediation approaches.

Challenges. Overall, most participants described the process
of remediation as cumbersome. Several complained that they
were facing an incident response process which they had never
used before and was complicated to use. Some participants
reported, that it was hard to estimate the consequences of
their incident. Without being aware of all consequences, it
was difficult to implement remediation, e. g.,

“It was a challenge not being able to say with 100% cer-
tainty that these secrets had never been misused [. . .].
There are scenarios where somebody could’ve [. . .] used
it in such a way that it would be very difficult to detect,

and we would have missed it. I didn’t like that feeling that
I couldn’t say with certainty there was no impact.”— I4.

Moreover, few participants complained, that no all-in-one
solution exists for any kind of incident. Selecting, learning,
and applying different or multiple remediation approaches
would be too complex and time-consuming.
Lessons Learned. Most participants reported that their reme-
diation process worked well in general. Of those, a few would
apply the same process for future incidents. Besides that, par-
ticipants requested changes for future incidents. While many
participants expressed the need for better tooling to faster and
easier remediate an incident, a few generally requested secret
scanning to prevent or at least faster remediate leakage.

6 Discussion

This section discusses our findings, makes recommendations
for developers and service providers, and provides ideas for
future research. We base the discussion on both studies, using
their individual findings to complement each other.
Encountering Code Secret Leakage. Our first point of dis-
cussion returns to the 30.3% of survey respondents that ex-
perienced code secret leakage, which turns out to be highly
prevailing (cf. Section 4.3) compared to related work. One
reason for this is that previous work [5, 13–16] focused on de-
tectable secrets, for example, API keys, which were included
in our survey. However, we additionally asked for credentials
that need to be shared, and encryption keys a program needs
to access. Our participants reported relying on the externaliza-
tion, blocking, and encryption of secrets. Monitoring secrets
through code scanners was less commonly mentioned, which
we relate to the high false positive rates [5, 13] that make
manual developer review necessary, e. g.,

“Most of the time, it just raises warnings about some se-
crets that are really supposed to be in the code and you
have to manually exclude it from being scanned.”— I13.

Usability and Adoption Aspects. Few participants reported
significant challenges with secret handling approaches. Many
participants deployed specific approaches due to good us-
ability. At the same time, using approaches that participants
used before or already knew about was a major theme. This
might indicate an adoption burden that developers could not
be willing to overcome, since light-weight approaches like
blocking secrets via VCS (e. g., .gitignore) were adopted
often while more resource-intensive approaches were not.
For example, using short-living secrets that are rotated regu-
larly, is a good fit to reduce the temporal attack surface and
therefore potential secret leakage’s impact – but was reported
rarely. However, this would require more automation. While
Secret-as-a-Service (SaaS) solutions and secret management
tools like HashiCorp Vault can provide this out-of-the-box,
developers, especially in small development teams, might not
use them because they require additional setup and learning

(cf. Section 5.1). Our findings regarding tool usage are con-
sistent with previous research that focused on security tool
adoption [60, 61]. Overall, we believe that approaches need to
be light-weight to be adopted, or ideally require no developer
effort at all. An excellent example for the latter is GitHub’s
secret scanning program, which is enabled by default for all
public repositories [62] – therefore driving adoption at scale.

Secret Leakage Reporting. Interestingly, we found a mis-
match in our survey between the low number of reports with
problems using a code secret handling approach (7, 6.4%)
in relation to the number of people that experienced leak-
age (33, 30.3%). Developers could experience leaks in their
teams, for example, through a team member accidentally leak-
ing hard-coded data not sufficiently secured through secret
management approaches. Possible explanations include that
developers do not relate the experienced code secret leakage
with failed secret handling approaches. As we found in our
interviews, they may also have not tried to use any approach,
so they could not fail, e. g., “We were a startup, [we didn’t
had any prevention approaches in place], we took all the
measures after the secret leakage.” (I2). Moreover, as a final
factor, developers may have used an insufficient approach, so
they have not failed this approach directly, but leaked a code
secret nevertheless. If developers are unaware of problems or
do not report them, it does not mean there are no issues.

Access Control Models. Some developers reported not feel-
ing responsible for secret leakage. Instead, other team mem-
bers, other teams, management, and clients had access to se-
crets and caused leaks. This is likely caused by secrets being
shared as part of the development or deployment process
(cf. Figure 4). To better support developers with this, future
research should work on secure and easy-to-use secret-sharing
and management platforms providing secret transfer and re-
vocation between involved stakeholders.

Lack of Helpful Resources. In both the survey and the inter-
views, we found a lack of comprehensive resources that guide
developers in the case of secret incidents. This is a burden for
developers when they experience secret leakage. Although se-
cret leakage is widespread, developers do not encounter it on
a daily basis; they cannot be expected to instantly know what
measures to take. Nonetheless, an incident ideally requires in-
stant action. Therefore, we argue that easily accessible online
resources are needed, and should contain actionable steps for
easy, fast, and secure remediation. We think that code host-
ing platforms are a place to provide such information. This
also holds for prevention approaches: developers complained
about insufficient or missing documentation for deployment
or usage (cf. Section 5.1 and 5.3).

Constructive Incident Handling. One interesting conse-
quence of secret leakage was the firing of a full team or the
complete termination of client contracts as a reaction to a
secret leakage, potentially caused only by a single person.
Considering our findings on the resources for secret leakage

in general, we assume that this is mainly a problem with ed-
ucation and awareness, so systemic consequences like these
are unlikely to prevent further leakage, especially consider-
ing that team members or clients are usually replaced with
new, potentially less experienced stakeholders. Furthermore,
it may discourage developers from reporting secret leakage
to other team members or leaders, e. g., “I didn’t ask anyone,
I knew what to do, I just responded directly.” (I5). This can
be highly problematic considering that the same participant
applied insufficient remediation approaches and others could
still misuse the leaked secrets. We propose to instead use re-
strictive access management, support through security teams,
and education of team members and clients to prevent issues
in companies [63].
Developer Awareness. Developers must be more aware of
the risk and consequences of code secret leakage. After study-
ing the experiences, challenges, and needs that developers had
with prevention approaches, the human factor seems to be the
most relevant regarding code secret leakage prevention, e. g.,

“Even with all the technology [. . .] to prevent secret leak-
age, the biggest contributor to secret leakage is the hu-
man factor, or negligence.”— I2.

Companies need to properly onboard new developers to re-
duce the risk of secret leakage by training them or by policies
(cf. Section 5.1.1). They also need to be trained and should be
supported in developing and understanding threat models [64].
Typically, companies can also strengthen their cybersecurity
advocates, as recommended by Haney et al. [65].
Manual vs. Automation. We found that developers desire in-
creased automation for code secret leakage prevention. How-
ever, usability and maintenance challenges make the use of
automated approaches, including code secret scanners, vaults,
and automated rotation services, complicated. Manual ap-
proaches, such as restrictive access models and manual block-
ing of secrets in the repository, are subject to human error. Our
findings illustrate the challenges of making the right trade-off
decisions between security, ease of use, and maintainability of
manual and automated approaches. Ultimately, the approach
should be based on the developer or team’s specific use case,
considering their unique requirements and constraints.

6.1 Recommendations for Developers
We derive recommendations based on the approaches that we
identified (cf. Table 3). We discuss these recommendations
for more secure and usable code secret management for devel-
opers and focus on approaches that our survey and interview
participants found to be secure and usable.
Prevention. We suggest combining different approaches to
decrease the likelihood of code secret leakage. First, develop-
ers should externalize secrets, e. g., using environment vari-
ables or tools like vaults and secret managers, and block se-
crets in the repositories using, e. g., .gitignore files. These

approaches can both prevent accidental commits. Monitor-
ing , e. g., using secret scanners, especially as a pre-commit
approach, can provide additional security. Some scenarios
require developers to share code secrets with others. In such
cases, we recommend to encrypt secrets, so unauthorized third
parties cannot access them. Tools like e. g., git-secret, SOPS
and GPP support comfortable secret encryption.

Remediation. Typical steps that should always be taken to
remediate code secret leakage effectively are to renew or
revoke secrets that leaked to prevent further misuse of af-
fected services, analyze leaks to identify the root causes of
the leak, and revise the access management using those results,
e. g., apply more restrictive access management if needed. We
also consider it essential to notify the concerned roles (e. g.,
management, security team, customers) for legal and ethical
reasons, if not to get the appropriate help from security and
privacy experts. Overall, we consider the above steps neces-
sary because these steps will handle all consequences of a
secret leak. The other approaches (cf. Table 3) can be used to
complement the essential ones and should be considered as
a second step in the circumstantial situation. Removal from
source code and cleaning up VCS history are important steps.
However, they cannot save a leaked secret on GitHub or simi-
lar platforms since those services are frequently crawled for
archival purposes [5]. This, and the risk of archiving of pub-
lic websites emphasize the need to renew or revoke secrets
that have leaked in public spaces. Server Operations and sys-
temic consequences (e. g., introducing new processes) depend
heavily on company policies, the type of leak, and how well
leakage damage can be prevented when developers can just
renew or revoke secrets that have leaked. In case developers
have remediation approaches prepared, we suggest testing
them to make sure they work as expected in case of a leak.

6.2 Recommendations for Service Providers

Based on our findings, we discuss recommendations for im-
proved code secret management for service providers.

Improving Online Documentation. We identified a lack of
available documentation for secret leakage countermeasures.
As platforms are the central instance, those can potentially
reach many developers and should therefore provide easy-
to-understand, accessible, and actionable guidance on secret
leakage prevention and (especially) remediation. We believe
that the approaches and recommendations for developers iden-
tified in this paper could be a good starting point for providing
comprehensive guidance by service providers.

Provide and Extend Secret Scanning. We highly appreciate
the platforms’ effort in deploying large-scale secret monitor-
ing, e. g., GitHub [62] and GitLab [66], which automatically
scan public repositories for secrets and notify developers in
case of a leak. In the example of GitHub, secrets with a known
format are scanned using regular expressions. Those formats

are supplied by several partnering service providers and lim-
ited to their API keys and access tokens. Additionally, the
tokens are checked by the partner services for validity and
automatically revoked if valid [67]. We believe this to be a
suitable approach as it allows fully automated and, therefore,
instant remediation. This is currently limited to a set of secrets
and would be better if it included more types of secrets, like
SSH keys. Although those cannot be revoked automatically
(there is no central service provider), at least notifying the
developers would be possible.

6.3 Outlook

Usability of Prevention and Remediation Approaches. To
investigate and improve the Those would have to solve a
programming task applying different code secret leakage pre-
vention approaches to measure and compare their usability,
or have to remediate a given secret leak.
Improving Secret Detection and Leakage Prevention. As
discussed in related work (Section 2), general secret detection
has high false-positive rates [13–16]. Future work should aim
to improve detection accuracy so that platforms and devel-
opers can get useful secret scanners at hand. Another aspect
that needs to be researched is secret leakage prevention. One
approach is to develop and evaluate API designs that aim to
prevent secret leakage by forcing a strict separation of code
and data, e. g., the secrets. This may ensure security by default.
The appropriate time for both secret scanning and prevention
remains uncertain.
Comparison of Supporting Tools. Several tools support our
identified approaches, e. g., secret scanners or vaults to ex-
ternalize secrets and enable automatic rotation. A user study
could investigate the challenges of using these tools. Addition-
ally, how supportive they are in preventing and remediating
code secret leakage could be measured.

7 Conclusion

In our online survey with 109 experienced software devel-
opers, we learned about their experiences with code secret
leakage. We identified nine approaches developers use to pre-
vent code secret leakage and nine approaches for code secret
leakage remediation. 30.3% of the survey respondents experi-
enced code secret leakage in the past. In 14 in-depth, semi-
structured interviews with developers who experienced code
secret leakage, we identified several problems and challenges
that developers face when preventing and remediating code
secret leakage. We make recommendations for both develop-
ers and service providers and outline ideas for future research
based on our analysis. Overall, we strongly recommend that
developers take preventative measures before any secret is
accidentally leaked and be aware of the risks associated with
leaking secret information.

Acknowledgments

We want to thank all survey participants and interviewees
for supporting our research. Furthermore, we thank the
anonymous reviewers and our shepherd for their construc-
tive feedback. This research was funded in part by the
VolkswagenStiftung Niedersächsisches Vorab – ZN3695, the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC
2092 CASA – 390781972, and NSF grants CNS-2206865 and
CNS-22 07008. Any findings and opinions expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies.

Availability

To allow full replication of our research as well as meta-
research, we provide a replication package at https://doi.
org/10.25835/xfc2h3pg.

The replication package includes:

1. The full survey and interview recruitment materials (in-
cluding Upwork post and invitation, as well as GitHub
invite messages).

2. The survey screening questions and interview pre-survey
questionnaire.

3. The survey and interview consent form.
4. The survey questionnaire and interview guide.
5. The survey and interview codebook.
6. The background section on version control, source code

platforms, and secret information.

References

[1] Git Project. Git. https://git-scm.com/ (visited on
02/02/2023).

[2] Stack Overflow. Stack Overflow Developer Survey
2022. https://survey.stackoverflow.co/2022/
(visited on 08/08/2022). 2022.

[3] GitHub Inc. GitHub. https://github.com/.

[4] GitLab Inc. GitLab. https://gitlab.com/.

[5] Michael Meli, Matthew R McNiece, and Bradley
Reaves. “How Bad Can It Git? Characterizing Secret
Leakage in Public GitHub Repositories.” In: NDSS.
2019.

[6] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
“Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation”. In: Proc. 26th Net-
work and Distributed System Security Symposium
(NDSS’19). 2019.

[7] Dwayne McDaniel. Toyota Suffered a Data Breach
by Accidentally Exposing A Secret Key Publicly On
GitHub. https : / / blog . gitguardian . com /
toyota- accidently- exposed- a- secret- key-
publicly-on-github-for-five-years/ (visited
on 02/02/2023).

[8] Mike Hanley. We updated our RSA SSH host key.
https://github.blog/2023-03-23-we-updated-
our-rsa-ssh-host-key/ (visited on 05/16/2023).

[9] Eyal Katz. 8 Proven Strategies To Protect Your Code
From Data Leaks. https://spectralops.io/blog/
8-proven-strategies-to-protect-your-code-
from-data-leaks/ (visited on 02/01/2023).

[10] Beata Berecki. Best Practices for Source Code Se-
curity. https://www.endpointprotector.com/
blog/your-ultimate-guide-to-source-code-
protection/ (visited on 02/06/2023).

[11] CheatSheets Series Team. Secrets Management Cheat
Sheet. https://cheatsheetseries.owasp.org/
cheatsheets / Secrets _ Management _ Cheat _
Sheet.html (visited on 02/06/2023).

[12] Mackenzie Jackson. Best practices for managing and
storing secrets including API keys and other creden-
tials. https://blog.gitguardian.com/secrets-
api-management/ (visited on 02/06/2023).

[13] Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoo-
lia, Rohan Padhye, and Senthil Mani. “Detecting and
Mitigating Secret-Key Leaks in Source Code Reposi-
tories”. In: 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories. 2015, pp. 396–400.

[14] Aakanksha Saha, Tamara Denning, Vivek Srikumar,
and Sneha Kumar Kasera. “Secrets in Source Code:
Reducing False Positives using Machine Learning”.
In: 2020 International Conference on COMmunication
Systems NETworkS (COMSNETS). 2020, pp. 168–175.

[15] Sofiane Lounici, Marco Rosa, Carlo Negri, Slim Tra-
belsi, and Melek Önen. “Optimizing Leak Detection in
Open-source Platforms with Machine Learning Tech-
niques”. In: Proc. 7th International Conference on
Information Systems Security and Privacy (ICISSP).
SciTePress, 2021.

[16] Sabrina Kall and Slim Trabelsi. “An Asynchronous
Federated Learning Approach for a Security Source
Code Scanner”. In: Proc. 7th International Conference
on Information Systems Security and Privacy (ICISSP).
SciTePress, 2021.

https://doi.org/10.25835/xfc2h3pg
https://doi.org/10.25835/xfc2h3pg
https://git-scm.com/
https://survey.stackoverflow.co/2022/
https://github.com/
https://gitlab.com/
https://blog.gitguardian.com/toyota-accidently-exposed-a-secret-key-publicly-on-github-for-five-years/
https://blog.gitguardian.com/toyota-accidently-exposed-a-secret-key-publicly-on-github-for-five-years/
https://blog.gitguardian.com/toyota-accidently-exposed-a-secret-key-publicly-on-github-for-five-years/
https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/
https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/
https://spectralops.io/blog/8-proven-strategies-to-protect-your-code-from-data-leaks/
https://spectralops.io/blog/8-proven-strategies-to-protect-your-code-from-data-leaks/
https://spectralops.io/blog/8-proven-strategies-to-protect-your-code-from-data-leaks/
https://www.endpointprotector.com/blog/your-ultimate-guide-to-source-code-protection/
https://www.endpointprotector.com/blog/your-ultimate-guide-to-source-code-protection/
https://www.endpointprotector.com/blog/your-ultimate-guide-to-source-code-protection/
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://blog.gitguardian.com/secrets-api-management/
https://blog.gitguardian.com/secrets-api-management/

[17] Runhan Feng, Ziyang Yan, Shiyan Peng, and Yuanyuan
Zhang. “Automated Detection of Password Leakage
from Public GitHub Repositories”. In: Proceedings of
the 44th International Conference on Software Engi-
neering. ICSE ’22. Pittsburgh, Pennsylvania: Associa-
tion for Computing Machinery, 2022, pp. 175–186.

[18] Md Rayhanur Rahman, Nasif Imtiaz, Margaret-Anne
Storey, and Laurie Williams. “Why secret detection
tools are not enough: It’s not just about false positives-
An industrial case study”. In: Empirical Software En-
gineering 27.3 (2022), p. 59.

[19] S. Basak, L. Neil, B. Reaves, and L. Williams. “What
are the Practices for Secret Management in Software
Artifacts?” In: 2022 IEEE Secure Development Confer-
ence (SecDev). Los Alamitos, CA, USA: IEEE Com-
puter Society, Oct. 2022, pp. 69–76.

[20] Hala Assal and Sonia Chiasson. “Security in the Soft-
ware Development Lifecycle”. In: Proceedings of
the Fourteenth USENIX Conference on Usable Pri-
vacy and Security. SOUPS ’18. Baltimore, MD, USA:
USENIX Association, 2018, pp. 281–296.

[21] Hala Assal and Sonia Chiasson. “’Think Secure from
the Beginning’: A Survey with Software Developers”.
In: Proceedings of the 2019 CHI Conference on Hu-
man Factors in Computing Systems. CHI ’19. Glasgow,
Scotland Uk: Association for Computing Machinery,
2019, pp. 1–13.

[22] Julie M. Haney, Simson L. Garfinkel, and Mary F. The-
ofanos. “Organizational practices in cryptographic de-
velopment and testing”. In: 2017 IEEE Conference on
Communications and Network Security (CNS). 2017,
pp. 1–9.

[23] Julie M. Haney, Mary Theofanos, Yasemin Acar, and
Sandra Spickard Prettyman. “"We make it a big deal
in the company": Security Mindsets in Organizations
that Develop Cryptographic Products”. In: Fourteenth
Symposium on Usable Privacy and Security. Baltimore,
MD: USENIX Association, Aug. 2018, pp. 357–373.

[24] Andrew Ruef, Michael Hicks, James Parker, Dave
Levin, Michelle L Mazurek, and Piotr Mardziel. “Build
it, break it, fix it: Contesting secure development”. In:
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. 2016,
pp. 690–703.

[25] Daniel Votipka, Kelsey R. Fulton, James Parker,
Matthew Hou, Michelle L. Mazurek, and Michael
Hicks. “Understanding security mistakes developers
make: Qualitative analysis from Build It, Break It, Fix
It”. In: 29th USENIX Security Symposium (USENIX Se-
curity 20). USENIX Association, Aug. 2020, pp. 109–
126.

[26] Hernan Palombo, Armin Ziaie Tabari, Daniel Lende,
Jay Ligatti, and Xinming Ou. “An Ethnographic Under-
standing of Software (in) Security and a Co-Creation
Model to Improve Secure Software Development”.
In: Proceedings of the Sixteenth USENIX Conference
on Usable Privacy and Security. SOUPS’20. USA:
USENIX Association, 2020.

[27] D. Wermke, N. Wohler, J. H. Klemmer, M. Fourne, Y.
Acar, and S. Fahl. “Committed to Trust: A Qualitative
Study on Security & Trust in Open Source Software
Projects”. In: 2022 IEEE Symposium on Security and
Privacy (SP). Los Alamitos, CA, USA: IEEE Com-
puter Society, May 2022, pp. 1880–1896.

[28] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-
nau, Marco Herzog, Sergej Dechand, and Matthew
Smith. “Why Do Developers Get Password Storage
Wrong?: A Qualitative Usability Study”. In: Proc. 24th
ACM Conference on Computer and Communication
Security (CCS’17). ACM, 2017.

[29] Tamara Lopez, Thein Tun, Arosha Bandara, Levine
Mark, Bashar Nuseibeh, and Helen Sharp. “An
Anatomy of Security Conversations in Stack Over-
flow”. In: 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Software Engineering
in Society (ICSE-SEIS). 2019.

[30] Qualtrics LLC. Qualtrics. https://www.qualtrics.
com/.

[31] Stanley Presser, Mick P Couper, Judith T Lessler, Eliz-
abeth Martin, Jean Martin, Jennifer M Rothgeb, and
Eleanor Singer. “Methods for testing and evaluating
survey questions”. In: Public opinion quarterly 68.1
(2004), pp. 109–130.

[32] Upwork Global Inc. Upwork. https://www.upwork.
com/ (visited on 02/01/2023).

[33] Upwork Global Inc. Software Developer Hourly Rates.
https : / / www . upwork . com / hire / software -
developers/cost/ (visited on 02/01/2022).

[34] Dominik Wermke, Noah Wöhler, Jan H. Klemmer,
Marcel Fourné, Yasemin Acar, and Sascha Fahl. “Com-
mitted to Trust: A Qualitative Study on Security &
Trust in Open Source Software Projects”. In: 43rd
IEEE Symposium on Security and Privacy, IEEE S&P
2022, May 22-26, 2022. IEEE Computer Society, May
2022.

[35] Xunhui Zhang, Tao Wang, Yue Yu, Qiubing Zeng, Zhix-
ing Li, and Huaimin Wang. “Who, What, Why and
How? Towards the Monetary Incentive in Crowd Col-
laboration: A Case Study of Github’s Sponsor Mech-
anism”. In: Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems. CHI ’22.
New Orleans, LA, USA: Association for Computing
Machinery, 2022.

https://www.qualtrics.com/
https://www.qualtrics.com/
https://www.upwork.com/
https://www.upwork.com/
https://www.upwork.com/hire/software-developers/cost/
https://www.upwork.com/hire/software-developers/cost/

[36] Kathy Charmaz. Constructing Grounded Theory.
SAGE Publications, 2014.

[37] Anselm Strauss and Juliet M Corbin. Grounded theory
in practice. SAGE Publications, 1997.

[38] Juliet Corbin and Anselm Strauss. “Grounded theory
research: Procedures, canons and evaluative criteria”.
In: Zeitschrift für Soziologie 19.6 (1990), pp. 418–427.

[39] Nora McDonald, Sarita Schoenebeck, and Andrea
Forte. “Reliability and Inter-Rater Reliability in Quali-
tative Research: Norms and Guidelines for CSCW and
HCI Practice”. In: Proc. ACM Hum.-Comput. Interact.
3.CSCW (Nov. 2019).

[40] Melanie Birks and Jane Mills. Grounded Theory: A
Practical Guide. Jan. 2015.

[41] Cathy Urquhart. Grounded Theory for Qualitative Re-
search: A Practical Guide. Jan. 2013.

[42] Dominik Wermke, Jan H. Klemmer, Noah Wöhler, Ju-
liane Schmüser, Harshini Sri Ramulu, Yasemin Acar,
and Sascha Fahl. ““Always Contribute Back”: A Quali-
tative Study on Security Challenges of the Open Source
Supply Chain”. In: In Proceedings of the 44th IEEE
Symposium on Security and Privacy (IEEE S&P ’23).
IEEE Computer Society, May 2023.

[43] Nicolas Huaman, Alexander Krause, Dominik Wermke,
Jan H. Klemmer, Christian Stransky, Yasemin Acar,
and Sascha Fahl. “If You Can’t Get Them to the Lab:
Evaluating a Virtual Study Environment with Security
Information Workers”. In: Eighteenth Symposium on
Usable Privacy and Security, SOUPS 2022, Boston
MA, USA, August 8-9, 2022. Boston, MA: USENIX
Association, Aug. 2022.

[44] Marco Gutfleisch, Jan H. Klemmer, Niklas Busch,
Yasemin Acar, M. Angela Sasse, and Sascha Fahl.
“How Does Usable Security (Not) End Up in Software
Products? Results From a Qualitative Interview Study”.
In: 43rd IEEE Symposium on Security and Privacy,
IEEE S&P 2022, May 22-26, 2022. IEEE Computer
Society, May 2022.

[45] Erin Kenneally and David Dittrich. “The Menlo Re-
port: Ethical principles guiding information and com-
munication technology research”. In: SSRN Electronic
Journal (Aug. 2012).

[46] Yasemin Acar, Michael Backes, Sascha Fahl, Simson
Garfinkel, Doowon Kim, Michelle L. Mazurek, and
Christian Stransky. “Comparing the Usability of Cryp-
tographic APIs”. In: Proc. 38th IEEE Symposium on
Security and Privacy (SP’17). IEEE, 2017.

[47] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,
Christian Stransky, Sebastian Möller, Yasemin Acar,
and Sascha Fahl. “Developers Deserve Security Warn-
ings, Too: On the Effect of Integrated Security Advice
on Cryptographic API Misuse”. In: Proc. 14th Sym-
posium on Usable Privacy and Security (SOUPS’18).
USENIX Association, 2018.

[48] GitHub. GitHub Acceptable Use Policies. https :
/ / docs . github . com / en / site - policy /
acceptable-use-policies/github-acceptable-
use-policies (visited on 05/05/2023.

[49] Elissa M. Redmiles, Ziyun Zhu, Sean Kross, Dhruv
Kuchhal, Tudor Dumitras, and Michelle L. Mazurek.
“Asking for a Friend: Evaluating Response Biases in
Security User Studies”. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS ’18. ACM, 2018.

[50] Mariana Peixoto, Dayse Ferreira, Mateus Cavalcanti,
Carla Silva, Jéssyka Vilela, João Araújo, and Tony
Gorschek. “On understanding how developers perceive
and interpret privacy requirements research preview”.
In: International Working Conference on Requirements
Engineering: Foundation for Software Quality. REFSQ
2020. Springer, 2020.

[51] Awanthika Senarath and Nalin A. G. Arachchilage.
“Why developers cannot embed privacy into software
systems? An empirical investigation”. In: Proceed-
ings of the 22nd International Conference on Evalu-
ation and Assessment in Software Engineering 2018.
EASE’18. ACM, 2018.

[52] Abraham H. Mhaidli, Yixin Zou, and Florian Schaub.
““We Can’t Live Without Them!” App Developers’
Adoption of Ad Networks and Their Considerations
of Consumer Risks”. In: Proc. 15th Symposium on
Usable Privacy and Security (SOUPS’19). USENIX,
2019.

[53] Harjot Kaur, Sabrina Amft, Daniel Votipka, Yasemin
Acar, and Sascha Fahl. “Where to Recruit for Security
Development Studies: Comparing Six Software Devel-
oper Samples”. In: 31st USENIX Security Symposium,
USENIX Security ’22, Boston MA, USA, August 10-12,
2022. USENIX Association, Aug. 2022.

[54] HashiCorp. HashiCorp Vault. https : / / www .
vaultproject.io/ (visited on 02/01/2023).

[55] Amazon Web Services. AWS Systems Manager. https:
//docs.aws.amazon.com/systems-manager (vis-
ited on 02/01/2023).

[56] GitHub Inc. GitHub Workflow. https : / / docs .
github.com/en/actions/using-workflows (vis-
ited on 02/01/2023).

https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://www.vaultproject.io/
https://www.vaultproject.io/
https://docs.aws.amazon.com/systems-manager
https://docs.aws.amazon.com/systems-manager
https://docs.github.com/en/actions/using-workflows
https://docs.github.com/en/actions/using-workflows

[57] Pastebin. Pastebin. https://pastebin.com/ (visited
on 02/01/2023).

[58] GitHub Inc. GitHub gists. https://gist.github.
com/ (visited on 02/01/2023).

[59] Amazon Web Services. Amazon Web Services. https:
//aws.amazon.com (visited on 02/01/2023).

[60] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson
Murphy-Hill, Chris Mayhorn, and Thomas Zimmer-
mann. “Quantifying Developers’ Adoption of Security
Tools”. In: Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. ESEC/FSE
2015. Bergamo, Italy: Association for Computing Ma-
chinery, 2015, pp. 260–271.

[61] Shundan Xiao, Jim Witschey, and Emerson Murphy-
Hill. “Social Influences on Secure Development Tool
Adoption: Why Security Tools Spread”. In: Proceed-
ings of the 17th ACM Conference on Computer Sup-
ported Cooperative Work & Social Computing. CSCW
’14. Baltimore, Maryland, USA: Association for Com-
puting Machinery, 2014, pp. 1095–1106.

[62] GitHub Inc. Secret Scanning. https://docs.github.
com / en / code - security / secret - scanning /
about-secret-scanning (visited on 02/01/2023).

[63] Nicolas Huaman, Bennet von Skarczinski, Christian
Stransky, Dominik Wermke, Yasemin Acar, Arne
Dreißigacker, and Sascha Fahl. “A Large-Scale Inter-
view Study on Information Security in and Attacks
against Small and Medium-sized Enterprises”. In: Proc.
30th Usenix Security Symposium (SEC’21). USENIX
Association, 2021.

[64] Adam Shostack. “Elevation of Privilege: Drawing De-
velopers into Threat Modeling”. In: 2014 USENIX
Summit on Gaming, Games, and Gamification in Secu-
rity Education (3GSE 14). San Diego, CA: USENIX
Association, Aug. 2014.

[65] Julie M. Haney and Wayne G. Lutters. “"It’s
Scary. . . It’s Confusing. . . It’s Dull": How Cybersecu-
rity Advocates Overcome Negative Perceptions of Se-
curity”. In: Fourteenth Symposium on Usable Privacy
and Security (SOUPS 2018). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 411–425.

[66] GitLab Inc. Secret Detection. https://docs.gitlab.
com/ee/user/application_security/secret_
detection/ (visited on 02/01/2023).

[67] GitHub Inc. Secret scanning partner program. https:
//docs.github.com/en/developers/overview/
secret- scanning- partner- program (visited on
02/01/2023).

A Analysis: Online Resources on Secret Han-
dling

As part of the exploration phase for this study, we researched
online guides and documents in summer of 2021 that cover se-
cret leakage prevention and remediation, e. g., discussing best
practices. While we mainly used the insights for the construc-
tion of survey questions and the interview guide, the guide
analysis itself yielded some minor results that we therefore
want to report here for completeness.

Interestingly, the online resources covered only a subset of
approaches compared to the survey (cf. Table 3). Regarding
leakage prevention, all but Code & Secret Reviews were men-
tioned. Contrary to the survey, Block Secrets (12 documents)
was the most popular approach, followed by Monitoring (11).
Externalizing and encrypting secrets both occurred in 9 docu-
ments, and restricting access in 4. The remaining approaches
occurred only once. Regarding leakage remediation, only four
of the overall nine approaches from the survey could be found.
As in the survey, Renew or Revoke Secret is the most com-
mon approach (7 documents). This is followed by cleaning
VCS history (2), analyzing leaks in detail (1), and access man-
agement considerations (1). That said, online resources are
seemingly more incomplete for remediation of an incident
than for prevention. However, the online guides covered the
important approaches and lacked only minor ones.

Overall, we found only a few resources on handling code
secrets. Many of them were incomplete (only covering one
or a few approaches) or inconsistent with each other. All this
indicates a lack of helpful information sources in terms of
secret handling for developers.

B Interview Questions

In the following, we present the interview questions used
to conduct the semi-structured interviews. The initial demo-
graphic and screening pre-survey including the consent form,
and the complete interview guide can be found in the replica-
tion package (cf. Availability section). We used a numbering
format where S stands for section and Q for question.

S1 Code Secrets
S1Q1. Secret Types: Please tell us about the kind of secret infor-
mation you come into contact with when writing and maintaining
your source code.
Definition Code Secret: A code secret is any secret information that
your program needs to access without user-input. For example, this
could be an API key or a private key.

□ S1Q1.1 Use Cases: Please provide some typical examples of
where you used code secrets before?

□ S1Q1.2 Sensibility: What do you think about the “sensibility”
of these secrets? How confidential/critical are these secrets?

□ S1Q1.3 Access: How do you decide on components or users
that can access these code secrets?

https://pastebin.com/
https://gist.github.com/
https://gist.github.com/
https://aws.amazon.com
https://aws.amazon.com
https://docs.github.com/en/code-security/secret-scanning/about-secret-scanning
https://docs.github.com/en/code-security/secret-scanning/about-secret-scanning
https://docs.github.com/en/code-security/secret-scanning/about-secret-scanning
https://docs.gitlab.com/ee/user/application_security/secret_detection/
https://docs.gitlab.com/ee/user/application_security/secret_detection/
https://docs.gitlab.com/ee/user/application_security/secret_detection/
https://docs.github.com/en/developers/overview/secret-scanning-partner-program
https://docs.github.com/en/developers/overview/secret-scanning-partner-program
https://docs.github.com/en/developers/overview/secret-scanning-partner-program

□ S1Q1.4 Participants: Who (components and people) typically
had access to these secrets?

S2 Code Secret Leakage & Recommendation
You are here because you experienced code secret leakage in the
past.
Definition: Code Secret Leakage refers to leaking code secrets, for
example through source code repositories, build scripts or CI and
similar approaches to source code sharing.
Examples: Also, a push of an API-Key to a publicly available source
code platform without consequences is considered as a code secret
leak. Or if the leak is inside a company platform (e.g., pushing to
an internal repo where only other members of the company have
access).

To better understand the prevalence of code secret leakage, we
would like to know how often you have experienced it.

S2Q1. Prevalence: How often did you experience secret leakage?
Please elaborate on your most impactful or latest code secret

leakage and the experiences you had with it.

S2Q2. Becoming aware: How did you recognize that a secret leak-
age happened?

S2Q3. Experience

□ S2Q3.1 Reason: How did the code secret leak happen?
□ S2Q3.2 Consequences: Can you describe the immediate con-

sequences?

– S2Q3.2.1 For the Company: What consequences were
there for the company? Cyberattacks? Monetary dam-
age?

– S2Q3.2.2 Authorities (If they got attacked): Did you
attempt to contact authorities/ prosecute the attackers?

– S2Q3.2.3 For external Stakeholders: Data Leak-
age/Monetary Damage/ Other inconvenience for the
client or other parties?

□ S2Q3.3 Changes: Were there any new measures/approaches
introduced to prevent secret leakage in the future?

S2Q4. Remediation: How did you react to the incident? How did
you remediate the code secret leak?

□ S2Q4.1 Experiences: What were your experiences when ap-
plying the approach(es)? What went well?

□ S2Q4.2 Involved Roles: Who was actually involved in reme-
diating the code secret leak?

□ S2Q4.3 Challenges: Did you encounter any challenges? Why?
□ S2Q4.4 Resources: Please tell us about the information

sources you used to remediate the code secret leak. In ex-
ample, online blogs, official documentation, other developers,
or the it-security team / incident response team.

□ S2Q4.5 Satisfaction: If a code secret leak happen again, would
you like to apply the same process for future code secret leak-
age remediation, or is there something you would like to change
or improve?

S3 Prevention Approaches
Let’s talk about your experiences regarding code secret leakage
prevention approaches.

S3Q1. Used approaches: If you used prevention approaches before,
please provide an example of approaches or tools you used to pre-
vent code secret leakage. (If missing, provide examples: Externalize
Secrets, Block Secrets, Monitoring, Restrict Access)

□ S3Q1.1 Understanding: Please describe how you used the
approach/tool in your project and why?

□ S3Q1.2 Reason: What was the rationale, or reason, why this
approach was introduced in your processes?

□ S3Q1.3 Experiences: Please tell us about the experiences with
these approaches and tools. Would you consider it easy to use,
effective, or secure?

□ S3Q1.4 Challenges: Please tell us about any challenges or
problems you faced.

□ S3Q1.5 Satisfaction: Does the approach fulfill your needs, or
do you desire changes to improve the approach?

S3Q2. Used approach and failed with: Have you had problems
trying to apply an approach or failed with an approach? Please tell
us about them.

□ S3Q2.1 Reason: What was the reason you decided for the
approach you failed with?

□ S3Q2.2 Causes of Failure: What caused the approach to fail
(in your specific accident)?

□ S3Q2.3 Improvements: What changes do you suggest could
improve the concept?

S3Q3. Known, but unused approaches: Can you name any further
approaches that you did not use so far and why?

□ S3Q3.1 Reason: Why did you decide not to use those?

– S3Q3.1.1 Future Use: Do you want to try them for
future projects?

– S3Q3.1.2 Experiences: Do you think the approach
would be easy-to-use?

– S3Q3.1.3 Challenges: Do you think you might en-
counter any challenges or problems along the way? What
are these challenges?

□ S3Q3.2 Satisfaction: Do you think the approach would ful-
fill your needs, or are you requesting changes to improve the
approach?

S3Q3 [IF in S3Q1 stated]. Secret Scanner: A popular approach
to detect secret leaks, are so-called secret scanners, that scan code,
repositories, or commits for any contained secrets. What are your
experiences if you have any?

□ S3Q3.1 Utilization: When is this scanner executed in your
project? (CI/CD, pre-commit, regular, etc.?)

□ S3Q3.2 False Positives: Do you think the scan results are
reliable? Why?

□ S3Q3.3 Challenges: Did you encounter any challenges or
problems along the way? What are these challenges? Have you
solved them?

S3Q4. Not used: [If not used any approaches/tools]: Have you
ever considered using an approach to prevent code secret leakage?
Can you elaborate on your decision?
S3Q5. Needs: Looking back at all your experiences with code secret
leakage and its prevention, what do you currently miss or think might
be helpful to successfully prevent code secret leakage? (Then if
nothing comes to their mind, we could specifically ask for resources,
tools, approaches.)

	Introduction
	Related Work
	Secret Leakage in Code Repositories
	Exploring Secure Development Approaches and Practices

	Methodology
	Online Survey with Developers
	Survey Procedure
	Recruitment and Inclusion Criteria
	Survey Structure
	Analysis

	Interviews with Developers
	Interview Procedure
	Recruitment and Inclusion Criteria
	Interview Structure and Interview Guide
	Analysis and Coding

	Participant Demographics
	Ethics & Data Protection
	Limitations

	Survey on Secret Management
	Version Control Systems and Platforms
	Secrets, Access, and Threat Model
	Code Secret Leakage Incidents
	Prevention and Remediation Approaches

	Interviews: Experiences with Secret Leakage
	Secret Leakage Prevention Approaches
	Challenges
	Lessons Learned

	Secret Leakage Incidents
	Secret Leakage Remediation

	Discussion
	Recommendations for Developers
	Recommendations for Service Providers
	Outlook

	Conclusion
	Analysis: Online Resources on Secret Handling
	Interview Questions

