
A Viewpoint on Human Factors in Software
Supply Chain Security: A Research Agenda.
Marcel Fourné, Dominik Wermke, Sascha Fahl, and Yasemin Acar,

Abstract—Securing the software supply chain requires that we recognize the
importance of individual developers. While securing dependencies and build
systems is necessary, recent attacks have shown that developers are a commonly
successfully attacked link in the chain. Therefore, a comprehensive approach that
considers the human factor is crucial for effective software supply chain security.

H uman factors, and especially developers, play
an important role in securing the Software
Supply Chain (SSC) [1].

SSC vulnerabilities pose significant risks to orga-
nizations, historically being exploited by threat actors
who target unpatched systems with known vulnera-
bilities [2]. Exploits targeting vulnerabilities like Heart-
bleed [3] and more recently Log4Shell [4] have high-
lighted weaknesses in both commercial and open-
source software, affecting both private and government
enterprises and billions of end users. More recently,
attackers directly exploited the SSC structure by tar-
geting upstream dependencies and build systems to
inject malicious code into downstream software, like in
the security incident at SolarWinds.1

Several steps to address dependency and build
chain problems have been proposed—updating and
using trusted dependencies, Software Bill of Materi-
als (SBoMs), securing the build process, and more
industry participation [5]. However, securing these de-
pendencies and build systems will likely not thwart
all attacks: Recent, headline-making attacks involved
breaches of the SSC through one of its largest attack
surfaces—individual developers. In January 2023, Cir-
cleCI disclosed that a cybercriminal had used malware
on a CircleCI engineer’s laptop to steal a valid, two-
factor authentication-backed SSO session, allowing the
attacker to execute session cookie theft and imperson-
ate the employee, gaining access to a subset of pro-
duction systems.2 In February 2023, password man-
ager LastPass reported that a hacker stole corporate
and customer data by infecting an employee’s personal
computer with key logger malware, giving them access
to the company’s cloud storage and resulting in the

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

1https://www.mandiant.com/resources/blog/evasive-attacke
r-leverages-solarwinds-supply-chain-compromises-with-sun
burst-backdoor

2https://circleci.com/blog/jan-4-2023-incident-report/

theft of source code and customer vault data.3 These
incidents highlight that each individual developer par-
ticipating in the SSC may have different technology
and knowledge stacks, and humans making decisions
about security and trust can put the SSC at risk [6]. We
explore both how to empower stakeholders to secure
the SSC by considering human factors and reducing
developer overwhelm, and also how to decrease the
attack surface of individual software developers.

Human Factors in Supply Chain
Research

Supply chain security (SCS) is a crucial area of con-
cern for businesses operating in today’s connected
economy. However, as with many aspects of security,
we think the human factors involved in the design,
implementation, and use of SCS measures have not
received the attention they deserve. We believe that
the usability of SCS measures for the people who will
use them, especially developers, is a critically under-
investigated area of research. To address the need for
more human-centered SCS approaches, we propose
multiple aspects for a high-level research agenda be-
low.

Motivations, Challenges, and Personal Risks.
Integrating external software components into software
projects presents unique challenges and risks for de-
velopers. The development of the external components
often involves different developers with a diverse set
of technology stacks, motivations, and development as
well as communication cultures. There is a responsi-
bility that comes with relying on external build com-
ponents and processes - in principle transparent, in
practice infeasible to completely vet across fragmented
ecosystems. The lack of clear hierarchies and trust
relationships across different software components can

3https://blog.lastpass.com/2023/03/security-incident-updat
e-recommended-actions/

Month Published by the IEEE Computer Society Publication Name 1

https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://circleci.com/blog/jan-4-2023-incident-report/
https://blog.lastpass.com/2023/03/security-incident-update-recommended-actions/
https://blog.lastpass.com/2023/03/security-incident-update-recommended-actions/


also make it easier for attackers to target and exploit
vulnerabilities.

To address these challenges, we think it is neces-
sary to research and promote systematic, usable com-
munication across creators of different components
along the software supply chain.

Usable Tooling.
Ideally, new functionality is integrated into versatile
tooling that developers are already using; it remains
unlikely that tools with unique interfaces and function-
alities will be widely adopted to check for individual
security properties.

To create build artifacts that can be trusted in an
informed manner, not through organizational authority,
one needs to know everything included in the creation
of said artifact; see the Trusting Trust attack [7].

While we applaud [8] the work of the reproducib
le-builds.org project, this should only be the baseline
and software build reproducibility - bootstrappability4

and diversified checking à la David A. Wheelers “Di-
verse Double-Compiling” [9] should be further security
targets. Their benefit needs to be prevalent in deployed
software and not limited to academic study to gain
practical advantages for every end user. This preva-
lence may yet entail publishing the source code and
complete build recipes of all software that may have
an effect on user security, to have them automatically
recompiled and the results checked after variation in
the environment, bootstrapping the necessary depen-
dencies cleanly.

All of this needs to be low effort for a wide range
of developers with different technology stacks, so re-
search is needed to explore which problems can be
solved with tooling, and how tooling can communicate
with its users in a way that allows for wide adoption.

Build Processes and CI/CD.
Today’s build systems and CI/CD pipelines can in-
teract and chain with other systems and third-party
services, allowing for the creation of complex, multi-
step build and distribution processes for software. But
this complexity also increases the risk of misuse, mis-
configuration, or leakage of secrets, and as software
is increasingly being built and deployed using third-
party services, these services are becoming high-value
targets for attackers seeking to infect all customers and
compromise their SSCs. This is highlighted by the re-
cent CircleCI security incident, where an attacker used
malware on an engineer’s laptop to gain unauthorized
access to CircleCI’s production systems.

4https://bootstrappable.org/

As build systems and CI/CD pipelines are becom-
ing increasingly complex, it is essential to not overlook
the human factor in setting up, maintaining, and using
them. Usability plays an important role in ensuring
that developers can effectively and securely utilize and
manage these complex systems: By establishing what
makes these usable for stakeholders, such as clear
documentation, user-friendly interfaces, and effective
training materials, we as researchers can reduce the
risk of misconfigurations and other vulnerabilities while
allowing developers to maintain productivity and work-
flow efficiency.

Dependencies.
Allowing developers to leverage external dependen-
cies as building blocks for their software, e.g., from
package repositories like npm or PyPI is an important
advantage of the SSC. However, the reliance on exter-
nal repositories also introduces new attack surfaces,
as recent typo-squatting and account-takeover attacks
have shown. In response, Python’s PyPI and GitHub
have begun requiring two-factor authentication (2FA)
for developer accounts with critical projects. While
such approaches may increase the overall security of
package repositories and dependencies, it is crucial to
also consider their usability. E.g., if 2FA is required, but
the authentication process is too complicated or time-
consuming, developers may find ways to bypass it,
which would undermine the intended security benefits.
Developers need to keep track of changes in depen-
dencies, so good communication practices about those
are necessary.

By examining the common challenges and usage
patterns involved in using and providing external de-
pendencies, researchers can identify ways to improve
the adoption of security processes, ultimately enhanc-
ing the security of the SSC.

Usable and Acceptable Authentication for Developers.
Developers create our digital tools, but how do we
know that the tools we have on our computer are
actually created by developers we trust? This is a
problem that has been well-studied and can be solved
with cryptographic signatures. With the most common
form of digital signatures in open source projects being
the venerable OpenPGP signature and Web of Trust,
both for authenticating developers as well as the ar-
tifacts of their labor, some projects have sprung up
thinking about how to solve this use-case in a more
user-friendly way without bringing in the possibility
of impersonation by some (trusted) third party. One
of those projects favored by the industry is sigstore
with ideas from certificate infrastructures, while more
security-minded software distributions have opted for

2 Publication Title Month 2023

reproducible-builds.org
reproducible-builds.org
https://bootstrappable.org/


simpler tools like OpenBSD’s signify.
This divide seems to be irreconcilable without in-

vestigating this area to find a universally acceptable
solution to the authentication problem that includes all
potential user concerns while being more user-friendly
than currently (at least partially) established practices.
Having a universally accepted standard for authenticat-
ing developers and their work would heighten the level
of security in SSC against impersonation, and can only
be established by research that centers the users of
this mechanism.

Metrics and Frameworks.
In the context of a secure SSC, metrics, and
frameworks that classify security vulnerabilities (CVE,
CVSS, VEX), weaknesses (CWE), or coding practices
(OpenSSF Scorecards) play an important role in com-
municating between stakeholders. Adoption is a critical
factor in the effectiveness of any metric or framework. If
these tools become widely adopted, they create a net-
work effect, whereby stakeholders become familiar with
the metric and share a common understanding of what
constitutes secure software development practices. As
more stakeholders adopt and utilize a particular metric
or framework, they build a collective understanding of
what it takes to develop secure software (according to
the metric), leading to a higher level of standardiza-
tion and consistency in secure software development
practices.

Designing these tools around the metrics stake-
holders actually care about, and centering usability
are key in making these tools effective and widely
accepted; without proper consideration of the human
factor, these tools may not be utilized to their fullest
potential or even adopted at all. Additionally, when
more stakeholders utilize these tools, they can provide
feedback on how to further improve their usability,
resulting in a continuous improvement cycle. By in-
vestigating and improving their usability, researchers
can increase the likelihood that stakeholders will utilize
these tools and ultimately establish a common under-
standing towards a more secure software ecosystem.

Open Source vs. Closed Source Conflicts.
Large companies sometimes adapt Open/Libre Source
Software (OSS) projects, and may have internal
changes to them that they maintain, update, develop,
and never contribute back into the OSS space [10].
This may also be true for dealing with vulnerabilities
and incurs costs for companies as well as the OSS
ecosystem where the software originated.

However, there are legitimate reasons for forking
and maintaining in a closed environment: oftentimes,
the OSS community may not want to develop in the

direction that a large company requires (e.g., Google,
boringSSL). A company may look at its plate first
instead of the whole upstream bowl.

There are trade-offs, due to the work required for
maintaining each internal fork a company may keep
internally - each one has to be kept up to date with
security patches, inventoried, and kept on watch for
vulnerabilities and plain errors being fixed upstream.
While having an internal cache of external depen-
dencies brings benefits like keeping each dependency
available even facing upstream disaster, they are cer-
tainly not for free and tend to break if left without care.
That care may even be a full internal fork with in-house
patches, but they too need to be maintained, making
mid-term costs skyrocket. Costs to interact with OSS—
one-time setup, repetitive—may be different on each
project.

A deeper understanding of better cooperation pos-
sibilities may be more economical, provide more
prompt reaction to security incidents, and be in the
best interest of all parties overall. Centering the needs,
challenges, and decisions of stakeholders in human
factors research can help improve cooperation in this
space.

“One Guy in Kansas”
Some open source software is so ubiquitous in the
development and operation of IT systems that its ex-
istence is hardly noticed. Its absence, or even just
unfixed bugs, could wreak large costs and other dam-
ages for big organizations. Surprisingly, some of that
software was developed or is maintained by very few
developers, colloquially known as “that one guy in
Kansas.” This is specifically true for many open source
projects, which are often done by default as hobbies,
not contributing significantly to the income of their main
developers. Research into how to better support these
small projects may have a significant impact on the
security of the SSC. In conclusion, we need to consider
human factors to secure the SSC, dependencies, and
build systems. Recent attacks have demonstrated that
developers are working on every link in the chain,
making approaches that consider the human factor an
important step for effective SSC security.

Acknowledgements We would like to thank Henrik
Plate and Laurie Williams for lively discussions and
valuable feedback on this paper. This work is funded
in parts by NSF grant CNS-2206865 and a Google
Research Scholar Award.

REFERENCES
[1] CISA, Securing the software supply chain: Rec-

ommended practices for developers, https : / /

Month 2023 Publication Title 3

https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF


www. cisa . gov / sites / default / files / publications /
ESF_SECURING_THE_SOFTWARE_SUPPLY_
CHAIN_DEVELOPERS.PDF, 2022.

[2] P. Ladisa, H. Plate, M. Martinez, and O. Barais,
“Sok: Taxonomy of attacks on open-source soft-
ware supply chains,” in 2023 IEEE Sympo-
sium on Security and Privacy (SP), IEEE, 2023,
pp. 1509–1526.

[3] Z. Durumeric, F. Li, J. Kasten, et al., “The matter
of heartbleed,” in Proceedings of the 2014 Con-
ference on Internet Measurement Conference,
ser. IMC ’14, Vancouver, BC, Canada: Associ-
ation for Computing Machinery, 2014, pp. 475–
488.

[4] D. Everson, L. Cheng, and Z. Zhang, “Log4shell:
Redefining the web attack surface,” in Workshop
on Measurements, Attacks, and Defenses for the
Web (MADWeb) 2022, 2022.

[5] W. Enck and L. Williams, “Top five challenges
in software supply chain security: Observations
from 30 industry and government organizations,”
IEEE Security & Privacy, vol. 20, no. 2, pp. 96–
100, 2022.

[6] D. Wermke, N. Wöhler, J. H. Klemmer, M.
Fourné, Y. Acar, and S. Fahl, “Committed to
Trust: A Qualitative Study on Security & Trust in
Open Source Software Projects,” in 43rd IEEE
Symposium on Security and Privacy, IEEE S&P
2022, May 2022.

[7] K. Thompson, “Reflections on Trusting Trust,”
Commun. ACM, vol. 27, no. 8, pp. 761–763, Aug.
1984.

[8] M. Fourné, D. Wermke, W. Enck, S. Fahl, and
Y. Acar, “It’s like flossing your teeth: On the im-
portance and challenges of reproducible builds
for software supply chain security,” in 2023 IEEE
Symposium on Security and Privacy (SP), 2023,
pp. 1527–1544.

[9] D. A. Wheeler, “Countering trusting trust through
diverse double-compiling,” in 21st Annual Com-
puter Security Applications Conference (AC-
SAC’05), IEEE.

[10] D. Wermke, J. H. Klemmer, N. Wöhler, et al.,
““always contribute back”: A qualitative study on
security challenges of the open source supply
chain,” in In Proceedings of the 44th IEEE Sym-
posium on Security and Privacy (IEEE S&P ’23),
IEEE Computer Society, May 2023.

4 Publication Title Month 2023

https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

	Human Factors in Supply Chain Research

